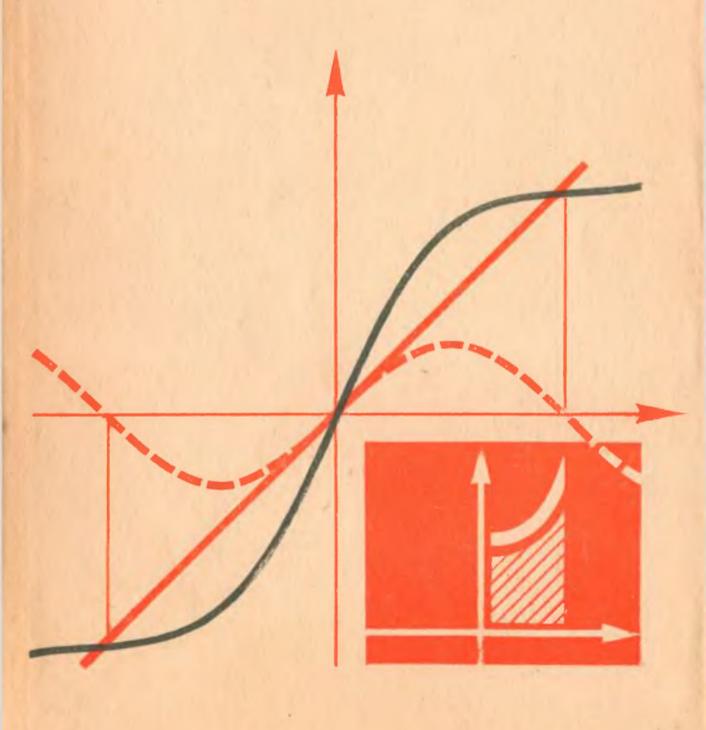
В.С.КРАМОР, П.А.МИХАЙЛОВ

ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ



ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

(Система упражнений для самостоятельного изучения)

ПОСОБИЕ ДЛЯ УЧАЩИХСЯ

издание второе, дополненное

Крамор В. С., Михайлов П. А.

К78 Тригонометрические функции: (Система упражнений для самостоят. изучения). Пособие для учащихся. — 2-е изд., доп. — М.: Просвещение, 1983.—159 с., ил.

Пособие содержит систему упражнений, подробные указания к ним, необходимый справочный материал для самостоятельного изучения учащимися тригонометрических функций, уравнений и неравенств, которые рассматриваются в школьных учебниках геометрии. алгебры и начал анализа.

K
$$\frac{4306020400-686}{100(03)-83}$$
 144-83 512

(C) Издательство «Просвещение», 1979 г.

(С) Издательство «Просвещение», 1983 г., с дополнениями.

ВВЕДЕНИЕ

Цель данного пособия — помочь учащимся старших классов средней общеобразовательной школы научиться самостоятельно решать задачи по тригонометрии.

Пособие имеет следующую структуру. Весь учебный материал разделен на отдельные задания, которые связаны с определенной темой. К каждому заданию дается необходимый теоретический материал, система упражнений с ответами, консультации (1-го и 2-го уровня) для усвоения и закрепления этой темы и контрольные задания. В случае необходимости читатель может изучить или восстановить в памяти доказательства теорем и формул по действующим икольным учебникам. Если решение того или другого примера проведено неправильно, то учащийся может обратиться к консультации первого уровня, с помощью которой он может достигнуть нужного результата. В противном случае (при повторном получении неверного ответа) учащийся может обратиться уже к консультации второго уровня. Эти консультации познакомят вас с рациональными приемами и методами поиска решения задач.

После того как все упражнения к данному заданию вами решены и усвоены все приемы, вам следует выполнить контрольное задание. Контрольное задание и ответы к нему даются к каждому заданию в конце второй консультации. Получение правильных ответов будет характеризовать вашу подготовленность по данной теме.

Пособие рассчитано на учащихся средних школ, слушателей подготовительных отделений вузов и абитуриентов, готовящихся к поступлению в вузы.

Некоторые упражнения взяты из пособия «Учебные алгоритмы и упражнения к ним», Просвещение, 1974.

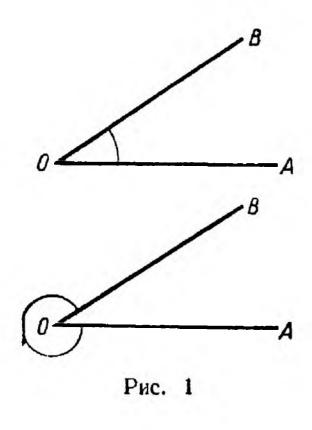
ЗАДАНИЕ 1

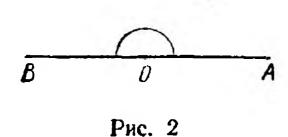
ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. УГЛЫ И ИХ ИЗМЕРЕНИЕ

Определение. Фигура, состоящая из двух различных лучей с общим началом и ограниченной ими части плоскости, называется углом.

Рассматриваемый угол будем показывать дугой и обозначать так: $\angle AOB$ (рис. 1).





Лучи OA и OB будем называть сторонами угла.

Если стороны угла образуют прямую, то такой угол называется развернутым (рис. 2).

Конгруэнтные углы имеют одну и ту же величину, поэтому конгруэнтные углы называются равновеликими.

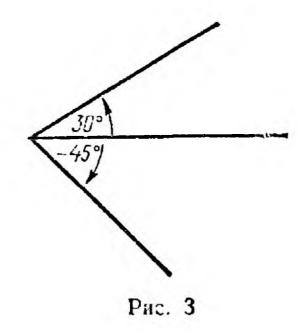
Разделим развернутый угол на 180 конгруэнтных углов. Величину одного из этих углов примем за единицу измерения величин углов и назовем градусом. Обозначаем ее так: 1°.

Величина развернутого угла равна 180°

и обозначается $\widehat{AOB} = 180^{\circ}$. Два луча с общим началом определяют два угла, сумма величин которых равна 360° .

§ 2. ПОВОРОТЫ ПЛОСКОСТИ ВОКРУГ ТОЧКИ

Определенне 1. Углом между двумя лучами будем называть величину меньшего из двух углов, образованных этими лучами. Угол между двумя совпадающими лучами принимаем равным нулю. О п р е д е л е н и е 2. Поворотом вокруг центра O называется такое перемещение плоскости, при котором: 1) точка O отображается сама на себя и 2) угол между любым лучом OA и соответствующим ему лучом OA_1 — постоянная величина α , называемая углом поворота. При повороте против часовой стрелки $\alpha > 0$, при повороте по часовой стрелке $\alpha < 0$, $\alpha = 0$ соответствует тождественному отображению плоскости, $\alpha = 0$ соответствует сего $\alpha < 0$ соответствует тождественному отображению плоскости, $\alpha = 0$ соответствует сего $\alpha < 0$ соответствует тождественному отображению плоскости, $\alpha < 0$ соответствует сего $\alpha < 0$ соответствует тождественному отображению плоскости, $\alpha < 0$ соответствует сего $\alpha < 0$ соответствует тождественному отображению плоскости, $\alpha < 0$ соответствует сего $\alpha < 0$ соответствует тождественному отображению плоскости, $\alpha < 0$ соответствует сего $\alpha < 0$ соответствует тождественному отображению плоскости, $\alpha < 0$ соответствует сего $\alpha < 0$ соответствует тождественному отображению плоскости, $\alpha < 0$ соответствует сего $\alpha < 0$ соответствует $\alpha < 0$ соответствует сего $\alpha < 0$ соответствует сего $\alpha < 0$ соо



Поворот с центром O на угол α будем обозначать $R_0^{\boldsymbol{n}}$.

На рисунке 3 показаны повороты R_o^{30} и R_o^{-45} . Поворот полностью определяется заданием центра поворота O и угла поворота α (по определению — $180^\circ \leqslant \alpha \leqslant 180^\circ$).

Если поворот представить как результат вращения, то один и тот же поворот R_0^{α} можно получить в результате вращения на угол $\beta = \alpha + 360^{\circ} \cdot n$, где $n \in \mathbb{Z}$, $-180^{\circ} \leqslant \alpha \leqslant 180^{\circ}$. Поэтому в дальнейшем будем пользоваться следующим наиболее общим определением поворота:

Определение 3. Если $\beta = \alpha + 360^{\circ} \cdot n$, где $n \in \mathbb{Z}$ и $-180^{\circ} \leqslant \alpha \leqslant 180^{\circ}$, то поворотом на угол β будем называть поворот на угол α , т. е.

$$R_O^{\alpha + 360^\circ \cdot n} = R_O^\alpha \tag{1.1}$$

Не надо путать понятия «угол» — множество точек плоскости и «угол поворота» — угловая величина.

Каждому углу поворота β можно поставить в соответствие только один угол поворота α , такой, что $\alpha \in [-180^\circ; 180^\circ]$. Обратное соответствие не является отображением, так как один и тот же поворот на угол α может быть образован различными вращениями (рис. 4).

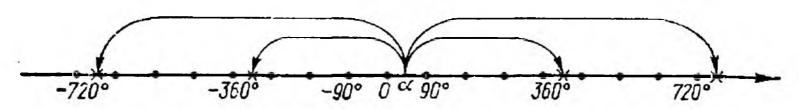


Рис. 4

Еще один пример. На рисунке 5 углам поворота $\beta_1 = 200^\circ$ и $\beta_2 = 920^\circ$ поставлен в соответствие один и тот же поворот на угол $\alpha = -160^\circ$, так как $200^\circ = -160^\circ + 360^\circ \cdot 1$ и $920^\circ = -160^\circ + 360^\circ \cdot 3$.

В обозначениях различных поворотов с общим центром в дальнейшем вместо R_o^α будем писать R^α . Приведем примеры поворотов:

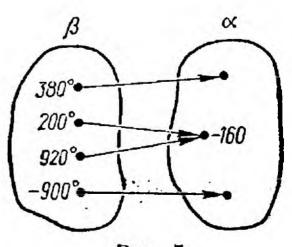


Рис. 5

$$R^{735^{\circ}} = R^{15^{\circ} + 360^{\circ} \cdot 2} = R^{15^{\circ}}$$

$$R^{1780^{\circ}} = R^{-20^{\circ} + 360^{\circ} \cdot 5} = R^{-20^{\circ}}$$

$$R^{360^{\circ}} = R^{0^{\circ} + 360^{\circ} \cdot 1} = R^{0^{\circ}} = E$$

$$R^{-1050^{\circ}} = R^{30^{\circ} - 360^{\circ} \cdot 3} = R^{30^{\circ}}.$$

§ 3. КОМПОЗИЦИЯ ПОВОРОТОВ

Определение 1. Результат последовательного выполнения двух поворотов R^{α} и R^{β} называется композицией поворотов R^{α} и R^{β} и обозначается $R^{\alpha} \circ R^{\beta}$.

Точка M при композиции поворотов R^{α} и R^{β} отобразится на точку M_1 : $M_1 = R^{\beta} (R^{\alpha} (M)) = R^{\alpha+\beta} (M)$.

Например, композиция поворотов R^{10° и R^{20° будет равна пово-

роту $R^{30^{\circ}}$, т. е. $R^{20^{\circ}} \circ R^{10^{\circ}} = R^{30^{\circ}}$.

Какими бы ни были углы поворота α и β, верны равенства

$$R^{\beta} \circ R^{\alpha} = R^{\alpha} \circ R^{\beta} = R^{\beta + \alpha} = R^{\alpha + \beta} \tag{1.2}.$$

Из последнего равенства следует, что композиция поворотов с общим началом переместительна.

Примеры

1. Найдите значение α , если $R^{50^{\circ}} \circ R^{\alpha} = R^{75^{\circ}}$.

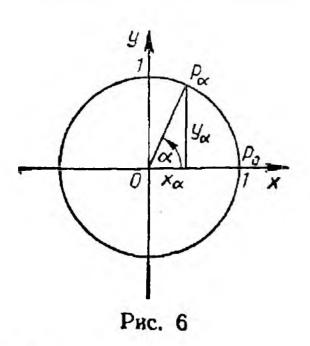
Решение. Из равенств (1.2) следует, что $R^{50^{\circ}} \circ R^{\alpha} = R^{50^{\circ}+\alpha}$. По определению поворота на произвольный угол β следует, что $50^{\circ} + \alpha = 75^{\circ} + 360^{\circ} \cdot n$, т. е. $\alpha = 75^{\circ} - 50^{\circ} + 360^{\circ} \cdot n = 25^{\circ} + 360^{\circ} \cdot n$.

Итак, $\alpha = 25^{\circ} + 360^{\circ} \cdot n$, где $n \in \mathbb{Z}$.

2. Сколько существует различных поворотов с общим центром, для которых $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = E$?

Решение. По определению $E = R^{0^{\circ}} = R^{0^{\circ}+360^{\circ}\cdot n}$, поэтому $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = R^{0^{\circ}+360^{\circ}\cdot n} \Rightarrow R^{\alpha+\alpha+\alpha+\alpha} = R^{0^{\circ}+360^{\circ}\cdot n} \Rightarrow 4\alpha = 0^{\circ} + 360^{\circ} \cdot n$.

Итак, $\alpha = 90^{\circ} \cdot n$, где $n \in \mathbb{Z}$ может принимать бесконечно много значений, поэтому α также принимает бесконечно много значений. Следовательно, задача имеет бесконечно много решений.



§ 4. СИНУС И КОСИНУС

Рассмотрим единичную окружность, т. е. окружность с центром в начале координат и радиусом, равным 1. Точку с координатами (1; 0) обозначим P_0 . При повороте R^{α} точка P_0 отображается на точку $P_{\alpha} = R^{\alpha}$ (P_0) (рис. 6).

Так как любому углу поворота α соответствует единственная точка P_{α} , то существует отображение $\alpha \to P_{\alpha}$. Следовательно, каждой угловой величине α мож-

но поставить в соответствие единственное число — абсциссу или ординату точки P_{α} . Числам, поставленным таким образом в соответствие угловой величине α , дается название — синус и косинус угла α . (Здесь и в дальнейшем синус и косинус угла α нужно понимать как синус и косинус угловой величины α .)

Определение 1. Ординату точки P_{α} назовем синусом угла α и обозначим $\sin \alpha = y_{\alpha}$.

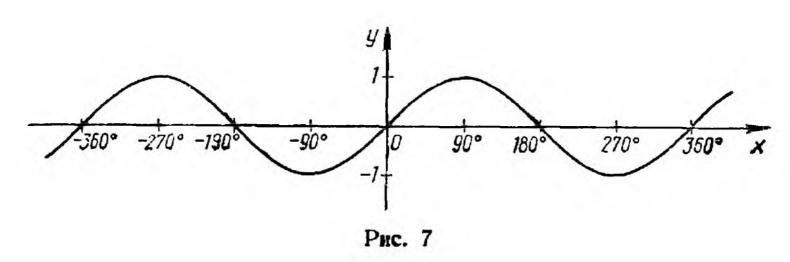
Определение 2. Абсциссу точки P_{α} назовем косинусом угла α и обозначим $x_{\alpha}=\cos\alpha$.

Из однозначности соответствия следует, что $\sin \alpha$ и $\cos \alpha$ являются функциями угла α . Так как $P_{\alpha+360^{\circ}\cdot n}=P_{\alpha}$, то $x_{\alpha+360^{\circ}\cdot n}=x_{\alpha}$, $y_{\alpha+360^{\circ}\cdot n}=y_{\alpha}$ и

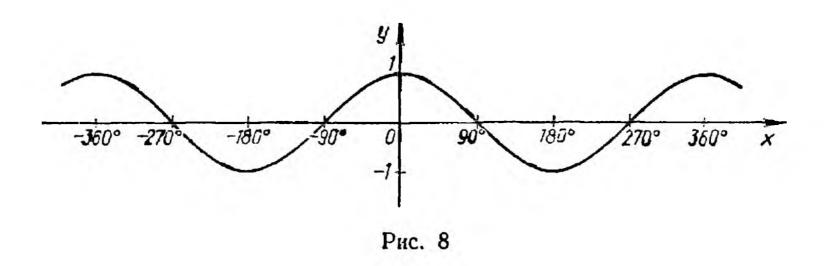
$$\sin (\alpha + 360^{\circ} \cdot n) = \sin \alpha, \cos (\alpha + 360^{\circ} \cdot n) = \cos \alpha \quad (1.3)$$

Равенства (1.3) означают, что функции sin α и соs α периодические с периодом 360°. Следовательно, достаточно исследовать поведение этих функций на отрезке [—180°; 180°].

Если в прямоугольной системе координат по оси абсцисс откладывать в некотором масштабе угол а, по оси ординат значения sin a, то график функции sin а выглядит так (рис. 7):



На рисунке 8 представлен график функции соѕ α:



Примеры

1. На координатной плоскости дана точка M (6; —8). Укажите координаты точки M_1 , если: а) $M_1 = R_0^{-90^\circ}$ (M); б) $M_2 = R^{180^\circ}$ (R^{-90° (M)).

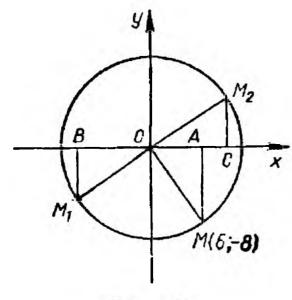
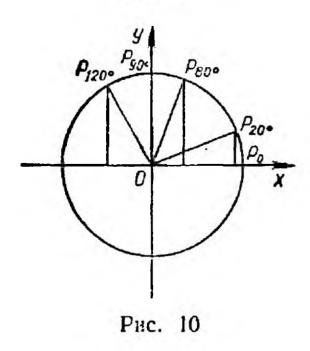


Рис. 9



Решение. a) Так как $\triangle OMA \cong$ $\cong \triangle OM_1B$ (puc. 9), to |AM| = |OB| и $|OA| = |BM_1|$. Следовательно, M_1 (—8; —6). как $\triangle OMA \cong \triangle OM_2C$, б) Так |OC| = |MA| и $|M_2C| = |OA|$. Следовательно, M_2 (8; 6).

2. Какие координаты имеет точка P_{-90} •

единичной окружности?

Решение. Так как точка $P_{-90^{\circ}}$ получена при повороте точки P_0 на угол $\alpha = -90^{\circ}$, то $P_{-90^{\circ}}$ имеет координаты (0; -1).

3. Найдется ли такой угол, для коτορογο: a) $\sin \alpha = -0.7$; b) $\cos \alpha = -1.7$?

Решение. а) На единичной окружности есть точка P_{α} , ордината равна -0.7, поэтому существует и угол α , синус которого равен -0,7. Таких углов бесконечно много. Например, угол с + $+ 360^{\circ} \cdot n$, где $n \in \mathbb{Z}$.

б) На единичной окружности точек с абсциссой, равной —1,7, не существует. Следовательно, углов, для которых $\cos \alpha =$

= —1,7, не существует.

4. Запишите в порядке возрастания значений: cos 20°, cos 120°, $\cos 90^{\circ}$, $\cos 80^{\circ}$.

Решение. Из рисунка 10 ясно, что значения функции соѕ α располагаются так: cos 120°, cos 90°, cos 80°, cos 20°.

УПРАЖНЕНИЯ

1. Что называется углом?

2. Что называется углом между двумя лучами?

3. Что называется поворотом вокруг центра O на угол α ?

4. Какая разница между понятиями: а) «угол» и «угловая величина»; б) «поворот» и «угол поворота»? Как эта разница отображается в обозначениях?

5. Какие из угловых величин: —500°, —189°, —180°, 0°, 14°, 176°, 360°, 753° — могут характеризовать угол, угол между

двумя лучами, поворот?

6. Как понимается равенство $R^{\alpha+360^{\circ} \cdot n} = R^{\alpha}$?

7. При повороте около центра O на 40° точка M отображается на точку M_1 . Укажите, при каких других значениях углов поворота точка M будет отображаться на эту же точку M_1 .

8. Запишите обозначения использованием C (где $-180^{\circ} \leqslant \alpha \leqslant 180^{\circ}$) повороты на угол: а) 500°; б) 856°; B) -920° ; r) -1000° .

- 9. Что называется композицией поворотов?
- 10. Всегда ли истинно высказывание: «Композиция поворотов на угол α и β переместительна»?
- 11. Докажите, что композиция поворотов обладает сочетательным свойством.
- 12. Найдите значение α, если

 - a) $R^{15^{\circ}} \circ R^{45^{\circ}} = R^{\alpha}$; Γ) $R^{-60^{\circ}} \circ R^{-\alpha} = R^{-30^{\circ}}$;

 - 6) $R^{120^{\circ}} \circ R^{\alpha} = R^{90^{\circ}};$ $R^{-\alpha} \circ R^{40^{\circ}} = R^{-70^{\circ}};$
 - B) $R^{\alpha} \circ R^{50^{\circ}} = R^{100^{\circ}}$; e) $R^{-15^{\circ}} \circ R^{\alpha} = E$.
- 13. Найдите поворот, для которого при всех М верно равенство R^{α} (R^{α} (M)) = M, т. е. $R^{\alpha} \circ R^{\alpha} = E$. Сколько различных решений имеет задача?
- 14. Сколько существует различных поворотов с общим центром, для которых $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = E$?
- 15. Найдите а, для которых выполнялось бы равенство:
 - a) $R^{\alpha} \circ R^{\gamma} \circ R^{\alpha} = R^{90^{\circ}}$; 6) $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = R^{180^{\circ}}$;
 - B) $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = R^{120^{\circ}}$
- 16. На координатной плоскости дана точка А (-6; 8). Укажите координаты точки A_1 , если:

 - a) $A_1 = R_0^{90^\circ}(A);$ π) $A_1 = R_0^{180^\circ}(R^{90^\circ}(A));$

 - 6) $A_1 = R_0^{130^{\circ}}(A);$ e) $A_1 = R^{-180^{\circ}}(R^{90^{\circ}}(A));$

 - B) $A_1 = R_0^{-90^\circ}(A);$ \times $A_1 = R^{-180^\circ}(R^{-90^\circ}(A));$

 - r) $A_1 = R_0^{-180^{\circ}}(A);$ 3) $A_1 = R^{180^{\circ}}(R^{-90^{\circ}}(A)).$
- 17. Какие координаты имеют точки единичной окружности:

- a) $P_{90^{\circ}}$; 6) $P_{180^{\circ}}$; B) $P_{270^{\circ}}$; C) $P_{-90^{\circ}}$; A) $P_{-180^{\circ}}$; e) $P_{-270^{\circ}}$?
- 18. Найдите значения синуса и косинуса следующих углов: 90°, 180° , 270° , -90° , -180° , -270° .
- 19. Найдется ли такой угол α, для которого:

 - a) $\sin \alpha = 0$; e) $\cos \alpha = 0$;
 - 6) $\sin \alpha = -1$; x) $\cos \alpha = 1$;
 - B) $\sin \alpha = -0.9$; s) $\cos \alpha = 0.3$;
- - r) $\sin \alpha = 1.4$; д) $\sin \alpha = -2$;
- $u) \cos \alpha = -1,2;$ κ) $\cos \alpha = -3$?
- 20. Определите знаки значений функций sin α и cos α для следуюших углов: а) 45° ; б) 135° ; в) 210° ; г) 333° ; д) 1280° ; е) — 235° ; ж) -1876° .

21. Запишите в порядке возрастания значений: a) $\sin 40^\circ$, $\sin 90^\circ$, $\sin 220^{\circ}$, $\sin 270^{\circ}$, $\sin 10^{\circ}$; 6) $\cos 15^{\circ}$, $\cos 0^{\circ}$, $\cos 90^{\circ}$, $\cos 138^{\circ}$, cos 180°.

Ответы

- 4. а) Угол множество точек плоскости, угловая величина скаляр;
 - б) поворот отображение плоскости, угол новорота угловая величина.
- **5.** Угол могут характеризовать: 14°, 176°, так как $0^{\circ} < \alpha < 360^{\circ}$. Угол между двумя лучами: 0°, 14°, 176°. Поворот: все.
- 7. $\beta = 40^{\circ} + 360^{\circ} \cdot n$, где $n \in \mathbb{Z}$.
- **8.** a) $R^{500^{\circ}} = R^{140^{\circ} + 360^{\circ} \cdot 1} = R^{140^{\circ}};$ B) $R^{-920^{\circ}} = R^{160^{\circ} 360^{\circ} \cdot 3} = R^{160^{\circ}};$ 6) $R^{556^{\circ}} = R^{136^{\circ} + 360^{\circ} \cdot 2} = R^{136^{\circ}};$ r) $R^{-1000} = R^{50^{\circ} - 360^{\circ} \cdot 3} = R^{50^{\circ}}.$
- 10. Не всегда. При различных центрах поворота композиция поворотов не обладает свойством переместительности.
- 12. a) $\alpha = 60^{\circ} + 360^{\circ} \cdot n$; $r) \alpha = -30^{\circ} + 360^{\circ} \cdot n$; б) $\alpha = -30^{\circ} + 360^{\circ} \cdot n$; д) $\alpha = 110^{\circ} + 360^{\circ} \cdot n$; в) $\alpha = 50^{\circ} + 360^{\circ} \cdot n$; e) $\alpha = 45^{\circ} + 360^{\circ} \cdot n$, где $n \in \mathbb{Z}$.
- 13. $\alpha = 180^{\circ} \cdot n$, где $n \in \mathbb{Z}$. Задача имеет бесконечно много решений.
- **14.** $\alpha = 120^{\circ} \cdot n$, где $n \in \mathbb{Z}$. Следовательно, существует бесконечно много поворотов, для которых $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = E$.
- **15.** a) $\alpha = 30^{\circ} + 120^{\circ} \cdot n$; 6) $\alpha = 60^{\circ} + 120^{\circ} \cdot n$; B) $\alpha = 30^{\circ} + 90^{\circ} \cdot n$, где $n \in \mathbf{Z}$.
- **16.** a) A_1 (—8; —6); б) A_1 (6; —8); в) A_1 (8; 6); г) A_1 (6; —8); д) A_1 (8; 6); e) A_1 (8; 6); ж) A_1 (—8; —6); з) A_1 (—8; —6). 17. a) (0; 1); б) (—1; 0); в) (0; —1); г) (0; —1); д) (—1; 0); е) (0; 1).
- 18. $\sin 90^\circ = 1$; $\sin 180^\circ = 0$; $\sin 270^\circ = -1$; $\sin (-90^\circ) = -1$; $\sin (-270^\circ) = 1.$
- 19. а) да; б) да; в) да; г) нет; д) нет; е) да; д) да; з) да; и) нет; к) нет.
- **20.** a) $\sin 45^{\circ} > 0$; $\cos 45^{\circ} > 0$; 6) $\sin 135^{\circ} > 0$; $\cos 135^{\circ} < 0$; B) $\sin 210^{\circ} < 0$; $\cos 210^{\circ} < 0$; r) $\sin 333^{\circ} < 0$; $\cos 333^{\circ} > 0$; д) $\sin 1280^{\circ} < 0$; $\cos 1280^{\circ} < 0$; e) $\sin (-235^{\circ}) > 0$; $\cos (-235^{\circ}) < 0$; ж) $\sin (-1876^{\circ}) < 0$; $\cos (-1876^{\circ}) > 0$.
- **21.** a) $\sin 270^{\circ}$; $\sin 220^{\circ}$; $\sin 10^{\circ}$; $\sin 40^{\circ}$; $\sin 90^{\circ}$; 6) $\cos 180^{\circ}$; $\cos 138^{\circ}$; $\cos 90^{\circ}$; $\cos 15^{\circ}$; $\cos 0^{\circ}$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- 5. Вспомните определения угла, угла между двумя лучами.
- 6. Равенство $R^{\alpha+360^{\circ} \cdot n} = R^{\alpha}$ есть определение поворота на произвольный угол β.

- 12. Используйте равенство $R^{\alpha} \circ R^{\beta} = R^{\alpha + \beta}$ и условие равенства поворотов.
- 13. См. пример 12.
- 14. См. пример 13.
- 15. См. пример 12.
- 16. Нарисуйте единичную окружность и образы точки P_0 при поворотах на соответствующий угол и рассмотрите конгруэнтные треугольники.
- 18. Решите задачу, используя единичную окружность.
- 20. з) Представьте угол -1876° в виде $-1876^{\circ} = -76^{\circ} 360^{\circ} \cdot 5$ и используйте единичную окружность.
- 21. a) Сначала нужно упорядочить отрицательные значения sin α, потом положительные.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

- 5. По определению угол характеризуется величиной, которая может меняться от 0 до 360° ($0^\circ < \alpha < 360^\circ$). Угол между двумя лучами по определению есть величина угла— $180^\circ \leqslant \alpha \leqslant 180^\circ$. Поворот может характеризоваться угловой величиной $-\infty < \alpha < \infty$.
- 12. $R^{15^{\circ}} \circ R^{45^{\circ}} = R^{15^{\circ}+45^{\circ}} = R^{60^{\circ}}$ из $R^{60^{\circ}} = R^{\alpha}$ следует, что $\alpha = 60^{\circ}+360^{\circ}$ n, где $n \in \mathbb{Z}$.
- 13. $R^{\alpha} \circ R^{\alpha} = R^{2\alpha}$. Из $R^{2\alpha} = E$ следует, что $R^{2\alpha} = R^{0^{\circ}+360^{\circ}n}$, отсюда в свою очередь $2\alpha = 360^{\circ}n$. Поэтому $\alpha = 180^{\circ}n$.
- 15. в) $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = R^{4\alpha}$. Из равенства $R^{4\alpha} = R^{120^{\circ}}$ следует, что $4\alpha = 120^{\circ} + 360^{\circ}n$. Следовательно, $\alpha = 30^{\circ} + 90^{\circ}n$, где $n \in \mathbb{Z}$.
- 16. $A_1 = R_0^{90^{\circ}}(A)$, $\triangle AOC \cong \triangle A_1OD$. Поэтому A_1 (—8; —6); (рис. 11).
- 20. з) Из рисунка 12 видно, что $\sin (-1876^{\circ}) < 0$ и $\cos (-1876^{\circ}) > 0$.

A(-6;8) D C X

Рис. 11

КОНТРОЛЬНОЕ ЗАДАНИЕ

- 1. Найдите значения α, если
- a) $R^{18^{\circ}} \circ R^{72^{\circ}} = R^{\alpha}$; B) $R^{\alpha} \circ R^{-50^{\circ}} = R^{20^{\circ}}$;
- 6) $R^{-\alpha} \circ R^{\alpha} = E$; r) $R^{20^{\circ}} \circ R^{-\alpha} = R^{-10^{\circ}}$.
 - 2. Возможно ли равенство $R^{\alpha} \circ R^{\alpha} \circ R^{\alpha} = R^{75}$?

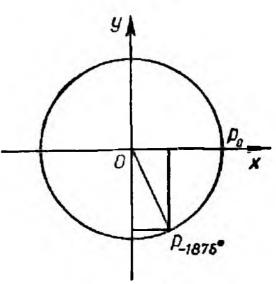


Рис. 12

- 3. На координатной плоскости дана точка А (2; -3). Укажите координаты точки A_1 , если:
 - a) $A_1 = R_0^{90^\circ}(A)$; B) $A_1 = R_0^{180^\circ}(A)$;
 - 6) $A_1 = R_0^{-90^\circ} (A);$ r) $A_1 = R_0^{270^\circ} (A).$
- **4.** Определите знак выражения: $\frac{\sin 50^{\circ} \cdot \cos 120^{\circ}}{\sin 215^{\circ}}$.
- 5. Запишите в порядке возрастания значений: cos 10°; sin 135°; cos 180°; sin 90°.

Ответы

1. a) $\alpha = 90^{\circ} + 360^{\circ} \cdot n, n \in \mathbb{Z}$;

- б) $\alpha = \alpha_1 + 360^{\circ} \cdot n$, где $-180^{\circ} \le \alpha_1 \le 180^{\circ}$, $n \in \mathbb{Z}$. в) $\alpha = 70^{\circ} + 360^{\circ} \cdot n$, $n \in \mathbb{Z}$.
- r) $\alpha = 30^{\circ} + 360^{\circ} \cdot n$, $n \in \mathbb{Z}$.

2. Да, при $\alpha = 25^{\circ} + 120^{\circ} \cdot n$, $n \in \mathbb{Z}$.

3. a) A_1 (3; 2); 6) A_1 (-3; -2); B) A_1 (-2; 3); r) A_1 (-3; -2).

4. Выражение положительно.

5. cos 180°, sin 135°, cos 10°, sin 90°.

ЗАДАНИЕ 2

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. TAHFEHC I KOTAHFEHC

Определение 1. Тангенсом угла α называется отношение $\frac{\sin \alpha}{\cos \alpha}$ и обозначается $\log \alpha$.

Итак, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$.

Область определения функции $tg \alpha$ состоит из всех тех углов, для которых $\cos \alpha \neq 0$. На отрезке [-180° ; 180°] таких углов два: $\alpha = 90^{\circ}$ и $\alpha = -90^{\circ}$. Если рассматривать произвольные углы α , то $tg \alpha$ не существует для углов $\alpha = 90^{\circ} + 180^{\circ} \cdot n$, где $n \in \mathbf{Z}$.

На рисунке 1 показана единичная окружность. Так как $\triangle OP_{\alpha}M_{\alpha} \sim \triangle OP_{0}A_{\alpha}$,

то для
$$0^{\circ} \leqslant \alpha < 90^{\circ}$$
 имеем $\lg \alpha = \frac{\sin \alpha}{\cos \alpha} =$

$$=\frac{|P_{\alpha}M_{\alpha}|}{|OM_{\alpha}|}=\frac{|A_{\alpha}P_{0}|}{|OP_{0}|}=\frac{|A_{\alpha}P_{0}|}{1}=|A_{\alpha}P_{0}|$$
. Для других углов легко установить знак tg α . Например, tg $\alpha=-|P_{0}A_{\alpha}|$ при $90^{\circ}<\alpha\leqslant$ $\leqslant 180^{\circ}$ (рис. 2). Итак, на прямой $P_{0}A_{\alpha}$ можно указать отрезок, длина которого,

можно указать отрезок, длина которого, взятая с соответствующим знаком, равна tg α . Используя такую возможность, нетрудно построить график функции tg α (рис. 3). Функция tg α — возрастающая функция.

Замечание. Прямую P_0A_{α} проводить через точку $P_{180^{\circ}}$ нельзя, она всегда проводится через точку P_0 перпендикулярно отрезку OP_0 .

Определение 2. Котангенсом угла α называется отношение $\frac{\cos\alpha}{\sin\alpha}$ и обозначается ctg α .

Итак,
$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$
.

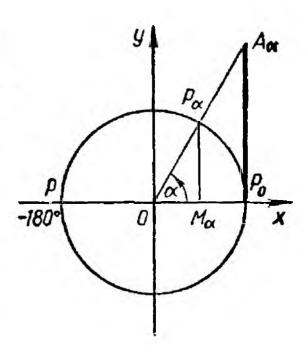


Рис. 1

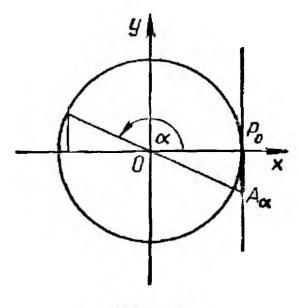


Рис. 2

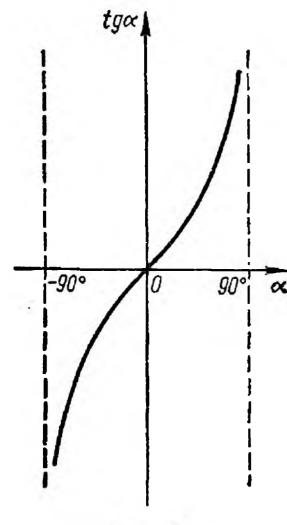
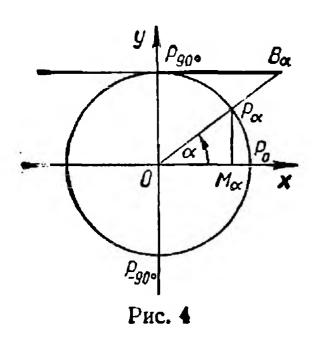


Рис. 3



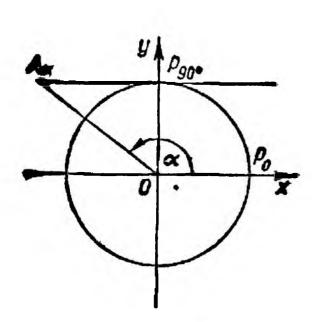


Рис. 5

Область определения функции ctg α состоит из всех тех углов, для которых sin $\alpha \neq 0$. При произвольном угле α их можно записать так: $\alpha \neq 180^{\circ} \cdot n$, где $n \in \mathbb{Z}$.

На рисунке 4 изображена единичная окружность. Так как $\triangle OP_{\alpha}M_{\alpha} \sim \triangle OP_{90^{\circ}}B_{\alpha}$, то для угла $0^{\circ} < \alpha \leqslant 90^{\circ}$.

$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{|OM_{\alpha}|}{|P_{\alpha}M_{\alpha}|} = \frac{|P_{90^{\circ}}B_{\alpha}|}{|OP_{90^{\circ}}|} = \frac{|P_{90^{\circ}}B_{\alpha}|}{|P_{90^{\circ}}B_{\alpha}|} = \frac{|P_{90^{\circ}}B_{\alpha}|}{$$

При 90° $\leq \alpha < 180°$, ctg $\alpha = -|A_{\alpha}P_{90°}|$.

Следовательно, на прямой $A_{\alpha}P_{90}$ (рис. 5) можно указать отрезок, длина которого, взятая с соответствующим знаком, равна ctg α .

Меняя угол α от 0 до 180°, можно построить график функции ctg α (рис. 6). Функция ctg α — убывающая функция.

Замечание. Прямую $P_{90^{\circ}}B_{a}$ через точку $P_{-90^{\circ}}$ проводить нельзя, она всегда проводится через точку $P_{90^{\circ}}$ перпендикулярно отрезку $OP_{90^{\circ}}$.

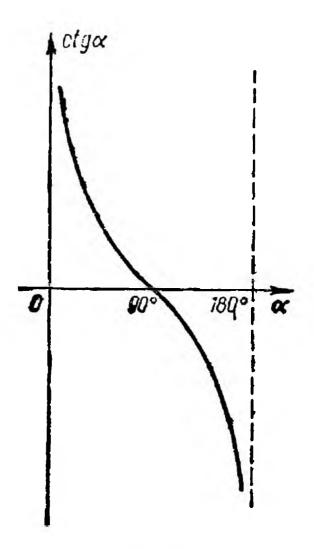


Рис. 6

§ 2. ЗНАКИ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Знаки значений функций sin α и cos α определяются знаками ординаты y_{α} и абсциссы x_{α} точки P_{α} единичной окружности (рис. 7).

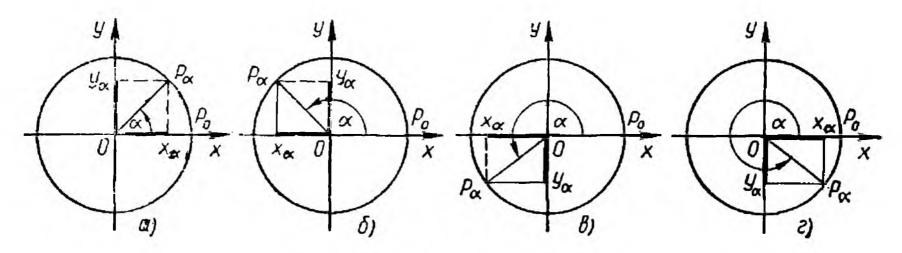


Рис. 7

Знак значений функции tg α совпадает со знаком ординаты точки A_{α} , знак значений функции ctg α — со знаком абсциссы точки B_{α} (рис. 8).

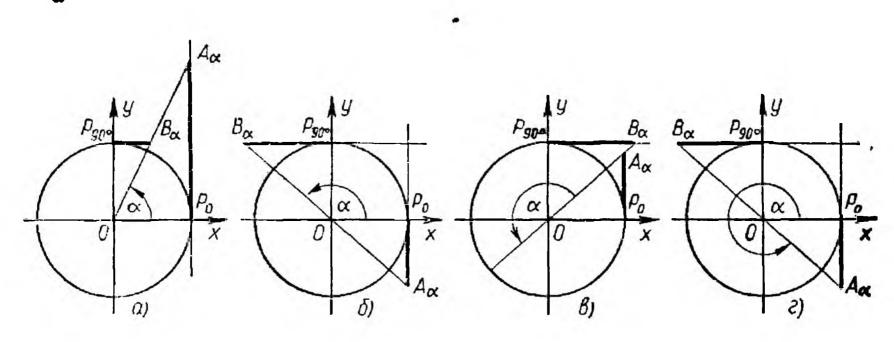


Рис. 8

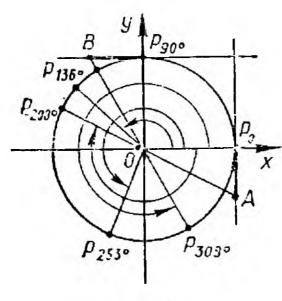
На единичной окружности можно не только определять знаки значений тригонометрических функций, но и оценить их модули. Например, $0 < tg 36^{\circ} < 1$; $1 < ctg 36^{\circ}$.

Пример

Определите знак произведения sin 136° · cos 253° · tg (—200°) × ctg 308°.

Решение. Точка P_{136° находится во II четверти, ее ордината положительна, следовательно, sin $136^\circ > 0$.

Точка P_{253° — в III четверти, ее абсцисса отрицательна, следовательно, $\cos 253^\circ < 0$, точка P_{-200° — во II четверти, поэтому tg (—200°) < 0, точка P_{308° — в IV четверти, поэтому ctg $308^\circ < 0$



Piic. 9

(рис. 9). Итак, произведение символически можно записать так: $(+) \cdot (-) \times \times (-) \cdot (-)$, т. е. оно отрицательно: $\sin 136^{\circ} \cdot \cos 253^{\circ} \cdot \text{tg} (-200^{\circ}) \cdot \text{ctg } 308^{\circ} < 0$.

§ 3. НЕКОТОРЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ТОЖДЕСТВА

Так как точка P_{α} лежит на единичной окружности, то $x_{\alpha}^2 + y_{\alpha}^2 = 1$ при любом α , т. е. $\sin^2 \alpha + \cos^2 \alpha = 1$.

На рисунке 10 а) видно, что $y_{180^{\circ}-\alpha} = y_{\alpha}$, т. е. $\sin (180^{\circ} - \alpha) = \sin \alpha$, и $x_{180^{\circ}-\alpha} = -x_{\alpha}$, т. е. $\cos (180^{\circ} - \alpha) = -\cos \alpha$.

На рисунке 10 б) видно, что $x_{-\alpha} = x_{\alpha}$, т. е. $\cos(-\alpha) = \cos \alpha$, и $y_{-\alpha} = -y_{\alpha}$, т. е. $\sin(-\alpha) = -\sin \alpha$.

На рисунке 10 в) видно, что $\triangle OP_{\alpha}M\cong\triangle OP_{90^{\circ}+\alpha}N$, поэтому

$$y_{90^{\circ}+\alpha} = x_{\alpha}, \text{ t. e. } \sin (90^{\circ} + \alpha) = \cos \alpha,$$

$$x_{90^{\circ}+\alpha} = -y_{\alpha}, \text{ t. e. } \cos (90^{\circ} + \alpha) = -\sin \alpha,$$

$$tg(90^{\circ} + \alpha) = \frac{\sin (90^{\circ} + \alpha)}{\cos (90^{\circ} + \alpha)} = \frac{\cos \alpha}{-\sin \alpha} = -\operatorname{ctg} \alpha,$$

$$ctg(90^{\circ} + \alpha) = \frac{\cos (90^{\circ} + \alpha)}{\sin (90^{\circ} + \alpha)} = \frac{-\sin \alpha}{\cos \alpha} = -\operatorname{tg} \alpha.$$

Перемножая почленно равенства $tg \alpha = \frac{\sin \alpha}{\cos \alpha}$ и $ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$, получим: $tg \alpha ctg \alpha = 1$.

Итак,

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\sin (180^\circ - \alpha) = \sin \alpha$$

$$\cos (180^\circ - \alpha) = -\cos \alpha$$
(2.i)
$$(2.2)$$

$$(2.3)$$

$$\sin\left(-\alpha\right) = -\sin\alpha\tag{2.4}$$

$$\cos\left(-\alpha\right) = \cos\alpha \tag{2.5}$$

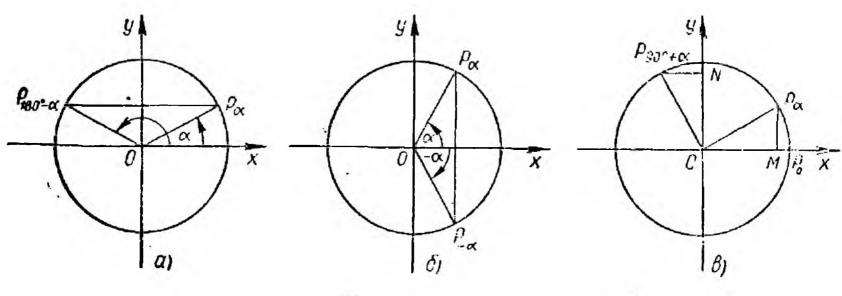


Рис. 10

$$\sin (90^{\circ} + \alpha) = \cos \alpha \qquad (2.6)$$

$$\cos (90^{\circ} + \alpha) = -\sin \alpha \qquad (2.7)$$

$$tg (90^{\circ} + \alpha) = -ctg \alpha \qquad (2.8)$$

$$ctg (90^{\circ} + \alpha) = -tg \alpha \qquad (2.9)$$

$$tg \alpha \cdot ctg \alpha = 1 \qquad (2.10)$$

Последнее равенство является тождеством на множестве таких значений α , которые не равны $90^{\circ} \cdot n$, где $n \in \mathbb{Z}$. При $\alpha = 90^{\circ} \cdot n$ не существует или tg α или ctg α . Равенства (2.1) — (2.7) являются тождествами.

Докажем еще несколько тождеств.

1. $\sin (90^{\circ} - \alpha) = \sin (90^{\circ} + (-\alpha)) = \cos (-\alpha) = \cos \alpha$ (*). Здесь мы использовали тождества (2.6) и (2.5).

2. $\cos (90^{\circ} - \alpha) = \cos (90^{\circ} + (-\alpha)) = -\sin (-\alpha) = \sin \alpha$ (**). Доказательство основано на тождествах (2.7) и (2.4).

3.
$$tg(90^{\circ} - \alpha) = \frac{\sin(90^{\circ} - \alpha)}{\cos(90^{\circ} - \alpha)} = \frac{\cos \alpha}{\sin \alpha} = ctg\alpha$$
.

При доказательстве использовали тождества (*) и (**).

4.
$$\operatorname{ctg}(90^{\circ} - \alpha) = \frac{\cos(90^{\circ} - \alpha)}{\sin(90^{\circ} - \alpha)} = \frac{\sin \alpha}{\cos \alpha} = \operatorname{tg}\alpha$$
.

Итак,

$$\sin (90^{\circ} - \alpha) = \cos \alpha,$$

$$\cos (90^{\circ} - \alpha) = \sin \alpha,$$

$$tg (90^{\circ} - \alpha) = ctg \alpha,$$

$$ctg (90^{\circ} - \alpha) = tg \alpha,$$

$$tg (180^{\circ} - \alpha) = -tg \alpha,$$

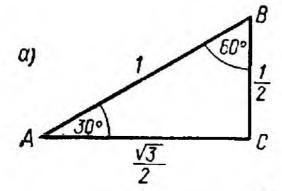
$$ctg (180^{\circ} - \alpha) = -ctg \alpha.$$
(2.11)
(2.12)
(2.13)
(2.14)
(2.15)

Представив угол $180^{\circ} + \alpha$ в виде $180^{\circ} - (-\alpha)$, легко получить, что

$$\sin (180^{\circ} + \alpha) = -\sin \alpha,$$
 (2.17)
 $\cos (180^{\circ} + \alpha) = -\cos \alpha,$ (2.18)
 $\tan (180^{\circ} + \alpha) = \tan \alpha,$ (2.19)
 $\cot (180^{\circ} + \alpha) = \cot \alpha.$ (2.20)

Сравнив тождества (2.2) — (2.3), (2.15) — (2.20), замечаем, что тригонометрические функции углов 180° \pm α равны функциям угла α с тем же названием, сравнив же тождества (2.6) — (2.9), (2.11) — (2.14), замечаем, что при переходе от функций углов 90° \pm α к функциям углов α названия функции меняются (синус на косинус, косинус на синус и т. д.). Во всех тождествах знак перед функцией угла α ставится такой, какой имеет функция угла 90° \pm α и 180° \pm α .

Формулы (2.2) — (2.3), (2.6) — (2.9), (2.11) — (2.20) будем называть формулами приведения. Они позволяют функции углов $90^{\circ} \pm \alpha$, $180^{\circ} \pm \alpha$ привести к функциям угла α .



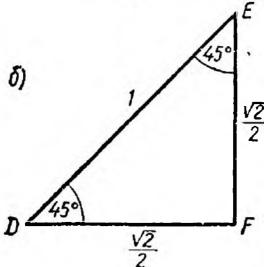
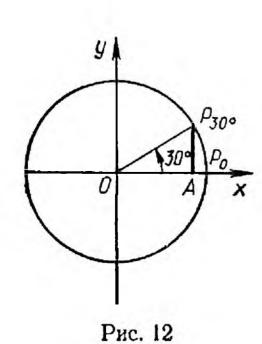
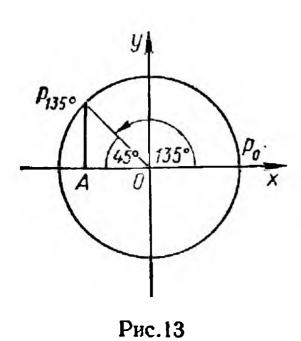


Рис. 11





§ 4. ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ НЕКОТОРЫХ УГЛОВ

Рассмотрим прямоугольные треугольники с гипотенузой, равной 1, и острым углом 30 и 45° (рис. 11, a, δ).

Катет, лежащий против угла в 30° , равен половине гипотенузы, поэтому $|BC| = \frac{1}{2}$. По теореме Пифагора

$$|AC| = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$$
 (puc. 11, a).

 $\triangle DEF$ — равнобедренный, поэтому [DF] \cong [EF]. Обозначив |DF| = |EF| = x по теореме Пифагора, получим: $x^2 + x^2 = 1$.

Отсюда
$$2x^2 = 1$$
 и $|EF| = x = \frac{\sqrt{2}}{2}$ (рис. 11, δ).

Эти треугольники позволяют определить значения тригонометрических функций углов, кратных 30° , 45° и 60° . Например, пусть требуется вычислить значения тригонометрических функций угла 30° . Рассмотрим на единичной окружности точку $P_{30^{\circ}}$ (рис. 12).

В
$$\triangle OAP_{30^{\circ}} | AP_{30^{\circ}} | = \frac{1}{2}$$
. Но $y_{30^{\circ}} = \sin 30^{\circ}$. Следовательно, $\sin 30^{\circ} = \frac{1}{2}$.

Аналогично $x_{30^\circ} = \cos 30^\circ$, т. е. $\cos 30^\circ = \frac{\sqrt{3}}{2}$. Стеюда $tg 30^\circ = \frac{\sin 30^\circ}{\cos 30^\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ и $ctg 30^\circ = \sqrt{3}$.

Вычислим значения тригонометрических функций угла 135° (рис. 13).

 B^{-} треугольнике $|\hat{O}AP_{135^{\circ}}| = \frac{\sqrt{2}}{2}
 |\hat{O}A| = \frac{\sqrt{2}}{2}.$

По определению sin $135^\circ = y_{130^\circ}$, но $y_{135^\circ} = |AP_{135^\circ}|$. Следовательно, sin $135^\circ = +\frac{\sqrt{2}}{2}$.

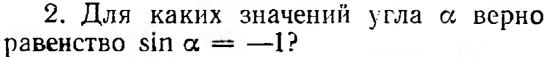
Аналогично $\cos 135^\circ = x_{135^\circ}$, но $x_{135^\circ} = -|OA|$. Следовательно, $\cos 135^\circ = -\frac{\sqrt{2}}{2}$.

Тогда $tg 135^\circ = \frac{\sin 135^\circ}{\cos 135^\circ} = -1$ и $ctg 135^\circ =$ $=\frac{\cos 135^{\circ}}{\sin 135^{\circ}}=-1.$

Примеры

1. Вычислите $\sqrt{3} \cos 30^{\circ} - 2 \text{ tg}^2 45^{\circ}$ — $-a \sin 180^{\circ}$.

Решение. Из рисунка 14 видно, 4TO $x_{30}^{\circ} = \cos 30^{\circ} = \frac{V3}{2}$; $|P_0A| = \text{tg } 45^{\circ} =$ = 1 и $\sin 180^{\circ} = 0$, поэтому $\sqrt{3} \cos 30^{\circ} -2 \text{ tg}^2 45^\circ - a \sin 180^\circ = \sqrt{3} \cdot \frac{\sqrt{3}}{2} - 2 \times$ $\times 1 - a \cdot 0 = -\frac{1}{2}$



Решение. По определению sin α это ордината точки P_{α} . Так как sin $\alpha =$ =-1, то $y_{\alpha}=-1$. Это возможно при $\alpha=-90^{\circ}+360^{\circ}\cdot n$, где $n\in \mathbb{Z}$ (рис. 15).

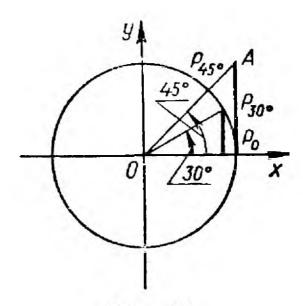


Рис. 14

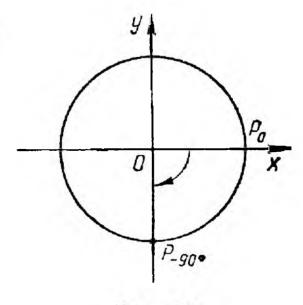


Рис. 15

УПРАЖНЕНИЯ

- 1. Докажите, что tg $(-\alpha) = -\text{tg } \alpha$ и ctg $(-\alpha) = -\text{ctg } \alpha$.
- 2. Определите знак произведения:
 - a) sin 110° · cos 110° · tg 230° · ctg 320°;
 - 6) $-\sin 50^{\circ} \cdot \lg 170^{\circ} \cdot (-\cos (-91^{\circ})) \cdot \csc (-640^{\circ}) \cdot \sin 530^{\circ}$.
- 3. Какой знак имеет произведение $\sin x \cdot \lg^3 x \cdot \cos x \cdot \operatorname{ctg} x \times$ $\times \frac{1}{\cos^5 x}$ при

- a) $0^{\circ} < x < 90^{\circ}$; B) $180^{\circ} < x < 270^{\circ}$; 6) $90^{\circ} < x < 180^{\circ}$; r) $270^{\circ} < x < 360^{\circ}$?
- 4. Пусть α , β , γ углы треугольника, τ . e. $\alpha + \beta + \gamma = 180^{\circ}$. Какой знак имеет сумма $\sin \alpha + \sin \beta + \sin \gamma$?
- 5. Определите знаки выражений: a) $\cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2}$;
 - б) $tg\frac{\alpha}{2} + tg\frac{\beta}{2} + tg\frac{\gamma}{2}$, если $\alpha + \beta + \gamma = 180^{\circ}$.
- $\frac{(a \sin 90^\circ)^3 + \operatorname{ctg} 270^\circ + (b \cos 180^\circ)^3}{(a \cos 0^\circ)^2 ab \sin 270^\circ + b^2 + \operatorname{tg}^2 180^\circ}$ 6. Упростите выражение

- 7. Вычислите: a) $\cos 60^{\circ} + 2 \sin 30^{\circ} + \frac{1}{2} tg^2 60^{\circ} ctg 45^{\circ}$; 6) $3 \cos 180^{\circ} + 5 \cot 270^{\circ} - 2 \sin 360^{\circ} - \tan 60^{\circ}$; B) $\sin 150^\circ \cdot \sin 240^\circ - tg 360^\circ \cdot \cos 315^\circ -ctg (-30^{\circ}) sin^2 330^{\circ} + 3 tg^2 30^{\circ}$. 8. Для каких значений угла α верно равенство: a) $\sin \alpha = 1$; B) $tg \alpha = 1$; A) $\sin \alpha = 0$; m $tg \alpha = 0$; 6) $\cos \alpha = 1$; r) $ctg \alpha = 1$; e) $\cos \alpha = 0$; 3) $ctg \alpha = 0$.
- 9. Найдите значения остальных тригонометрических функций угла α, если известно, что:
 - a) $\sin \alpha = \frac{m}{\sqrt{1+m^2}}$ при $0^\circ < \alpha < 90^\circ$; б) $\cos \alpha = \frac{\sqrt{a^2-b^2}}{a}$ при $270^\circ < \alpha < 360^\circ$; в) $\lg \alpha = \frac{1}{m}$ при $180^\circ < \alpha < 270^\circ$.
- 10. Вычислите значения остальных тригонометрических функций, если известно значение:
 - a) $\sin \alpha = 0.6$, $0^{\circ} < \alpha < 90^{\circ}$; B) $\log \alpha = 2$, $180^{\circ} < \alpha < 270^{\circ}$; β cos α = -0.6, 90° < α < 180°; r) ctg α = -3, 270° < α < 360°.
- 11. Выразите следующие тригонометрические функции через тригонометрические функции положительных углов, меньших 90°. a) $\sin 100^{\circ}$; 6) $\sin 160^{\circ}$; B) $\cos 170^{\circ}$; r) $tg 165^{\circ}$; π) $ctg (-310^{\circ})$; e) $\sin(-70^\circ)$; ж) $\cos(-215^\circ)$; з) $\log(-130^\circ)$.
- **12.** Докажите, что:
 - a) $\sin (270^{\circ} \alpha) = -\cos \alpha$; π) $\sin (270^{\circ} + \alpha) = -\cos \alpha$; 6) $\cos (270^{\circ} - \alpha) = -\sin \alpha$; e) $\cos (270^{\circ} + \alpha) = \sin \alpha$; E) $tg (270^{\circ} - \alpha) = ctg \alpha$; w) $tg (270^{\circ} + \alpha) = -ctg \alpha$; F) $ctg (270^{\circ} - \alpha) = tg \alpha$; 3) $ctg (270^{\circ} + \alpha) = -tg \alpha$.
- 13. Упростите: $\sin (90^{\circ} - \alpha) - \cos (180^{\circ} - \alpha) + \tan (180^{\circ} - \alpha) - \cot (270^{\circ} + \alpha)$.
- 14. $A = \frac{\cos{(\alpha 90^{\circ})}}{\sin{(180^{\circ} \alpha)}} + \frac{tg{(\alpha 180^{\circ})}\cos{(180^{\circ} + \alpha)}\sin{(270^{\circ} + \alpha)}}{tg{(270^{\circ} + \alpha)}}$ 15. $A = tg{100^{\circ}} + \frac{\sin{530^{\circ}}}{1 + \sin{640^{\circ}}}$
- 16. $A = \sin^2(180^\circ \alpha) + tg^2(180^\circ \alpha) tg^2(270^\circ + \alpha) +$ $+\sin(90^{\circ} + \alpha)\cos(\alpha - 360^{\circ}).$
- 17. $A = \sin^2 2\alpha + \cos^2 2\alpha + 5$.
- 18. $A = \frac{\sin^2 \alpha}{1 \sin^2 \alpha} \cdot \operatorname{ctg}^2 \alpha$. 19. $A = \frac{\operatorname{tg} x + \operatorname{tg} y}{\operatorname{ctg} x + \operatorname{ctg} y}$.
- 20. $A = (\sin x + \cos x)^2 + (\sin x \cos x)^2$. 21. $A = \sin^4 x + \cos^2 x \cos^4 x$.
- 22. $A = \sin \alpha \sqrt{\operatorname{ctg}^2 \alpha \cos^2 \alpha}$, если $\pi < \alpha < 2\pi$.
- 23. $A = \sqrt{1-\sin^2\frac{x}{2}} + \sqrt{1-\cos^2\frac{x}{2}}$, если $3\pi < x < 4\pi$.

Вычислите:

24.
$$A = \frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha}$$
, ecan $\lg \alpha = \frac{3}{5}$.

25.
$$A = \frac{3\sin^2\alpha + 12\sin\alpha\cos\alpha + \cos^2\alpha}{\sin^2\alpha + \sin\alpha\cos\alpha - 2\cos^2\alpha}$$
, если $\tan\alpha = 2$.

26.
$$A = \frac{\sin \alpha \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha}$$
, если $\cot \alpha = \frac{3}{4}$.

27. Дано:
$$\sin x + \cos x = n$$
. Найдите:

a)
$$A = \sin x \cos x$$
;

B)
$$A = \sin^3 x + \cos^3 x$$
;

6)
$$A = \sin x - \cos x$$
;

a)
$$A = \sin x \cos x$$
;
b) $A = \sin^3 x + \cos^3 x$;
c) $A = \sin^4 x + \cos^4 x$.

28. Выразите
$$\sin^4 \alpha - \sin^2 \alpha + \cos^2 \alpha$$
 через $\cos \alpha$.

29. При каких значениях
$$x$$
 из промежутка $0^{\circ} < x < 180^{\circ}$ выражение $\sqrt{-\text{tg }2x}$ существует в области действительных чисел? Докажите тождества:

30.
$$\sin^4 \alpha + \sin^2 \alpha \cos^2 \alpha + \cos^2 \alpha = 1$$
.

31.
$$(1-\cos^2\alpha)(1+tg^2\alpha)=tg^2\alpha$$
. 32. $\frac{1+tg^4\alpha}{tg^2\alpha+ctg^2\alpha}=tg^2\alpha$.

33.
$$(\lg \alpha + 2)(2 \lg \alpha + 1) = 5 \lg \alpha + \frac{2}{\cos^2 \alpha}$$
.

34.
$$\frac{\sin^3 \alpha + \cos^3 \alpha}{\sin \alpha + \cos \alpha} = 1 - \sin \alpha \cos \alpha.$$

35.
$$\sin^4 \alpha + \cos^4 \alpha - \sin^6 \alpha - \cos^6 \alpha = \sin^2 \alpha \cos^2 \alpha$$
.

36.
$$\frac{\sin^2 \alpha - \lg^2 \alpha}{\cos^2 \alpha - \operatorname{ctg}^2 \alpha} = \lg^6 \alpha.$$
37.
$$\frac{(\sin \alpha + \cos \alpha)^2 - 1}{\operatorname{ctg} \alpha - \sin \alpha \cos \alpha} = 2 \lg^2 \alpha.$$
38.
$$\frac{\sin^2 \alpha + 2 \cos^2 \alpha - 1}{\operatorname{ctg}^2 \alpha} = \sin^2 \alpha.$$

38.
$$\frac{\sin^2\alpha + 2\cos^2\alpha - 1}{\cot^2\alpha} = \sin^2\alpha.$$

39.
$$2 (\sin^6 \alpha + \cos^6 \alpha) + 1 = 3 (\sin^4 \alpha + \cos^4 \alpha)$$
.

40.
$$(1 + \operatorname{ctg} \alpha) \sin^3 \alpha + (1 + \operatorname{tg} \alpha) \cos^3 \alpha = \sin \alpha + \cos \alpha$$
.
41. $\frac{\sin^2 \alpha - \cos^2 \alpha}{1 + 2 \sin \alpha \cos \alpha} = \frac{\operatorname{tg} \alpha - 1}{\operatorname{tg} \alpha + 1}$.

41.
$$\frac{\sin^2\alpha - \cos^2\alpha}{1 + 2\sin\alpha\cos\alpha} = \frac{\lg\alpha - 1}{\lg\alpha + 1}$$

Ответы

- 2. а) Произведение положительно; б) произведение положительно.
- 3. а) Положительно; б) положительно; в) отрицательно; г) отрицательно.
- 4. Сумма положительна.
- 5. а) Сумма положительна; б) сумма положительна.

6.
$$a - b$$
. 7. a) 2; 6) $-\sqrt{3}(1 + \sqrt{3})$; B) 1.

8. a)
$$\alpha = 90^{\circ} + 360^{\circ} \cdot n$$
; η)

д)
$$\alpha = 180^{\circ} \cdot n;$$

e) $\alpha = 90^{\circ} + 180^{\circ} \cdot n;$

6)
$$\alpha = 360^{\circ} \cdot n$$
;
B) $\alpha = 45^{\circ} + 180^{\circ} \cdot n$;

ж)
$$\alpha = 180^{\circ} \cdot n$$
;

r)
$$\alpha = 45^{\circ} + 180^{\circ} \cdot n$$
;

3)
$$\alpha = 90^{\circ} + 180^{\circ} \cdot n$$
,

9. a)
$$\cos \alpha = \frac{1}{\sqrt{1+m^2}}$$
, $\operatorname{tg} \alpha = m$, $\operatorname{ctg} \alpha = \frac{1}{m}$;

6)
$$\sin \alpha = -\frac{b}{a}$$
, $\operatorname{tg} \alpha = -\frac{b}{\sqrt{a^2 - b^2}}$, $\operatorname{ctg} \alpha = -\frac{\sqrt{a^2 - b^2}}{b}$;

B)
$$\operatorname{ctg} \alpha = m$$
, $\sin \alpha = -\frac{1}{\sqrt{m^2 + 1}}$, $\cos \alpha = -\frac{m}{\sqrt{1 + m^2}}$.

10. a)
$$\cos \alpha = 0.8$$
, $\lg \alpha = 0.75$, $\operatorname{ctg} \alpha = \frac{4}{3}$;

6)
$$\sin \alpha = 0.8$$
, $\tan \alpha = -\frac{4}{3}$, $\cot \alpha = -\frac{3}{4}$;

B)
$$\sin \alpha = -\frac{2}{\sqrt{5}}$$
, $\cos \alpha = -\frac{1}{\sqrt{5}}$, $\operatorname{ctg} \alpha = \frac{1}{2}$;

r)
$$\sin \alpha = -\frac{1}{\sqrt{10}}$$
, $\cos \alpha = \frac{3}{\sqrt{10}}$, $\operatorname{tg} \alpha = -\frac{1}{3}$.

13.
$$2\cos\alpha$$
. 14. $\cos^2\alpha$. 15. $-\frac{1}{\sin 10^\circ}$. 16. 2. 17. 6. 18. 1. 19. $\lg x \times$

$$\times \text{ tg y. } 20. \ 2. \ 21. \ \sin^2 \alpha. \ 22. \ \frac{1}{\sin \alpha}. \ 23. \ \cos \frac{x}{2} - \sin \frac{x}{2}. \ 24. \ -4.$$

25.
$$\frac{37}{4}$$
. 26. $\frac{12}{7}$. 27. a) $\frac{n^2-1}{2}$; 6) $\pm \sqrt{2-n^2}$; B) $\frac{n(3-n^2)}{2}$; c) $0.5+n^2-0.5n^4$. 28. $\cos^4\alpha$. 29. $45^\circ < x \le 90^\circ$ и $135^\circ < x \le 180^\circ$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

1. Выразите $tg(-\alpha)$ и $ctg(-\alpha)$ через $sin(-\alpha)$ и $cos(-\alpha)$.

2. a) На единичной окружности отложите точки P_{110° , P_{230° и $P_{320^{\circ}}$ и определите знаки каждого из сомножителей, после чего определите знак произведения;

б) решается аналогично а).

4. Учтите, что в треугольнике не может быть угла, большего или равного 180°.

5. Учтите, что все углы α, β и γ меньше 180°, следовательно, их половины меньше 90°.

6, 7, 8. Используйте единичную окружность.

9. a) Из соотношения $\sin^2\alpha + \cos^2\alpha = 1$ найдите $\cos\alpha$ (при выборе знака $\cos \alpha$ учтите, что $\alpha \in \left]0; \frac{\pi}{2}\right[$);

б) см. указания 9а;

в) из соотношения $\sec^2\alpha = 1 + tg^2\alpha$ найдите $\sec\alpha$ (при выборе знака sec α учтите, что $\alpha \in \left[\frac{3\pi}{2}; 2\pi\right]$.

найдите остальные тригонометрические функции.

- 10. a) Используйте тождество $\cos^2 \alpha = 1 \sin^2 \alpha$;
 - б) используйте тождество $\sin^2 \alpha = 1 \cos^2 \alpha$;
 - в) используйте тождество $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$;
 - г) используйте тождество $1 + \operatorname{ctg}^2 \alpha = \frac{i}{\sin^2 \alpha}$.
- 11. а); б); в) и г). Используйте формулы приведения тригопометрических функций.

д); е); ж); з); и). Используйте свойства четности и нечетности тригонометрических функций. Далее см. а), б), в), г).

- 12. Примените формулы приведения тригонометрических функций.
- 13. См. пример 12.
- 14. Используйте свойства четности косинуса и нечетности тангенса. Примените формулы приведения тригонометрических функций.
- 15. Использовав формулы приведения и свойства периодичности, приведите тригонометрические функции к функциям острого угла.
- 16. Примените формулы приведения и свойство периодичности тригонометрических функций.
- 17. Используйте тождество $\sin^2 \alpha + \cos^2 \alpha = 1$.
- 18. Учтите, что 1 $\sin^2 \alpha = \cos^2 \alpha$.
- 19. В знаменателе перейдите к тангенсам и произведите сложение.
- 20. Примените формулы $(x + y)^2$ и $(x y)^2$.
- 21. Сгруппировав первое слагаемое с третым, разложите на множители выражение $\sin^4 x \cos^4 x$.
- 22. В подкоренном выражении вынесите за скобки $ctg^2 \alpha$. Далее извлеките корень, учитывая, что $\alpha \in]\pi; 2\pi[$.
- 23. Используйте тождество $\sin^2 x + \cos^2 x = 1$. Учтите, что $\sqrt{a^2} = |a|$ и $\frac{3\pi}{2} < \frac{x}{2} < 2\pi$.
- 24. Разделите почленно числитель и знаменатель на соѕ α.
- 25. Разделите почленно числитель и знаменатель на $\cos^2 \alpha$.
- 26. Разделите почленно числитель и знаменатель на $\sin^2 \alpha$.
- 27. а) Возведите в квадрат обе части данного равенства;
 - б) искомое выражение возведите в квадрат и воспользуйтесь результатом примера а);
 - в) $\sin^3 x + \cos^3 x$ разложите на множители и примените результат примера а);
 - г) дополните данное выражение до квадрата двучлена.
- 28. Сгруппируйте первые два члена, вынесите — $\sin^2 \alpha$ за скобки.
- 29. Определите, при каких значениях аргумента подкоренное выражение неотрицательно.
- 30. Сгруппируйте первые два слагаемых и вынесите общий множитель за скобки.

31. Используйте тождества $\sin^2 \alpha = 1 - \cos^2 \alpha$ и $1 + \lg^2 \alpha = \frac{1}{\cos^2 \alpha}$.

32. В числителе дроби вынесите $tg^2\,\alpha$ за скобки. Учтите, что $ctg^2\,\alpha = \frac{1}{tg^2\,\alpha}$.

33. Перемножьте выражения в скобках и приведите подобные члены.

34. Примените формулу $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$.

- 35. Сгруппируйте первое слагаемое со вторым, третье с четвертым. Представьте $\sin^6 \alpha + \cos^6 \alpha$ в виде $(\sin^2 \alpha)^3 + (\cos^2 \alpha)^3$ и разложите на множители.
- **36.** Вынесите за скобки в числителе дроби $tg^2 \alpha$, в знаменателе дроби $ctg^2 \alpha$.
- 37. В числителе представьте квадрат суммы двух выражений в виде многочлена, а в знаменателе вынесите ctg α за скобки.

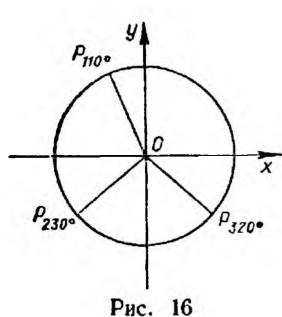
38. Представьте $2\cos^2\alpha = \cos^2\alpha + \cos^2\alpha$.

39. Сумму выражений шестых степеней разложите на множители по формуле $a^3 + b^3$, а единицу представьте в виде $(\cos^2 \alpha + \sin^2 \alpha)^2$.

40. Тангенс и котангенс выразите через синус и косинус угла.

41. Числитель левой части разложите на множители, а знаменатель представьте в виде $(a+b)^2$, учитывая, что $1=\sin^2\alpha+\cos^2\alpha$.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ



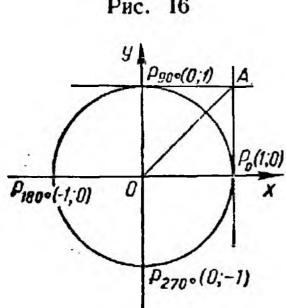


Рис. 17

1. $tg(-\alpha) = \frac{\sin(-\alpha)}{\cos(-\alpha)} = \frac{-\sin\alpha}{\cos\alpha} = -tg\alpha$.

Аналогично доказывается $ctg(-\alpha) = -ctg\alpha$.

2. а) На рисунке 16 видно, что $\sin 110^\circ > 0$, $\cos 110^\circ < 0$, $tg 230^\circ > 0$ и $ctg 320^\circ < 0$. Но произведение двух положительных и двух отрицательных сомножителей положительно.

б) Решается аналогично а).

4. $\sin \alpha > 0$, $\sin \beta > 0$, $\sin \gamma > 0$.

5. $0^{\circ} < \alpha < 180^{\circ}$, $0^{\circ} < \beta < 180^{\circ}$, $0^{\circ} < \gamma < 180^{\circ}$, следовательно, $0^{\circ} < \frac{\alpha}{2} < 90^{\circ}$, $0^{\circ} < \frac{\beta}{2} < 90^{\circ}$, $0^{\circ} < \frac{\gamma}{2} < 90^{\circ}$.

6. Используйте равенства $\sin 90^{\circ} = 1$, $\cot 270^{\circ} = 0$; $\cos 180^{\circ} = -1$, $\cos 0^{\circ} = 1$, $\sin 270^{\circ} = -1$; $\lg 180^{\circ} = 0$.

7. б) Пользуясь единичной окружностью, легко установить, что $\cos 180^\circ = -1$; $\cot 270^\circ = 0$; $\sin 360^\circ = 0$ и $\tan 60^\circ = \sqrt{3}$.

а) и в) решаются аналогично.

- 8. a) $\sin \alpha = y_{\alpha} = 1$, поэтому $\alpha = 90^{\circ} + 360^{\circ} \cdot n$ (рис. 17), $n \in \mathbb{Z}$.
 - 6) $\cos \alpha = x_{\alpha} = 1$, поэтому $\alpha = 360^{\circ} \cdot n$, $n \in \mathbb{Z}$.
 - в) $\lg \alpha = |P_0A| = 1$, $\triangle OAP_0$ прямоугольный и равнобедренный. Поэтому $\alpha = 45^\circ + 180^\circ \cdot n$, $n \in \mathbb{Z}$.
 - г) ctg $\alpha = |P_{90} A| = 1$, аналогично в) $\alpha = 45^{\circ} + 180^{\circ} \cdot n$.
 - д) $\sin \alpha = 0$. Ординаты двух точек равны нулю: $P_{0^{\circ}}$ и $P_{180^{\circ}}$. Поэтому $\sin \alpha = 0$ при $\alpha = 180^{\circ} \cdot n$, $n \in \mathbb{Z}$. Аналогично решаются остальные задачи.
- 9. a) $\sin \alpha = \frac{m}{\sqrt{1 + m^2}}; \ \alpha \in]0; \ \frac{\pi}{2}[;$ $\cos \alpha = \sqrt{1 \sin^2 \alpha} = \sqrt{\frac{1 + m^2 m^2}{1 + m^2}} = \frac{1}{\sqrt{1 + m^2}};$ $tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{m\sqrt{1 + m^2}}{\sqrt{1 + m^2}} = m; \ ctg \alpha = \frac{1}{tg \alpha} = \frac{1}{m};$
 - 6) $\cos \alpha = \frac{\sqrt{a^2 b^2}}{a}$; $\alpha \in \left[\frac{3\pi}{2}; 2\pi \right]$; $\sin \alpha = -\sqrt{1 - \cos^2 \alpha} = -\sqrt{\frac{a^2 - a^2 + b^2}{a^2}} = -\frac{b}{a}$; $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{b}{a} : \sqrt{\frac{a^2 - b^2}{a}}$; $\cot \alpha = \frac{\sqrt{a^2 - b^2}}{a} : \left(-\frac{b}{a} \right)$;
 - B) $\lg \alpha = \frac{1}{m}$; $\alpha \in]\pi$; $\frac{3}{2}\pi[$, отсюда m > 0, a $\sec \alpha = -\sqrt{1 + \lg^2 \alpha} = -\sqrt{\frac{1 + m^2}{m}}$; $\cos \alpha = \frac{1}{\sec \alpha} = -\frac{m}{\sqrt{1 + m^2}}$; $\sin \alpha = \lg \alpha \cdot \cos \alpha$; $\cot \alpha = \frac{1}{\lg \alpha} = m$.
- 10. a) $\cos^2 \alpha = 1 \sin^2 \alpha = 1 (0.6)^2 = 0.64$; $\cos \alpha = 0.8$; $\tan \alpha = \frac{0.6}{0.8} = 0.75$; $\cot \alpha = \frac{0.8}{0.6}$; $\sec \alpha = \frac{1}{\cos \alpha}$; $\csc \alpha = \frac{1}{\sin \alpha}$.
 - б) Так как $\alpha \in]90^{\circ}$; 180° [, то $\sin \alpha = +\sqrt{1-0.36} = +0.8$; $tg \alpha = \frac{0.8}{-0.6}$; $ctg \alpha = \frac{-0.6}{0.8}$; $sec \alpha = \frac{1}{-0.6}$; $cosec \alpha = \frac{1}{0.8}$.
 - в) Так как $\alpha \in]180^{\circ}$; 270° [, то $1 + tg^{2} \alpha = 1 + 2^{2} = \frac{1}{\cos^{2} \alpha}$, $a = \cos^{2} \alpha = \frac{1}{5}$; $\sin \alpha = -\sqrt{1 \cos^{2} \alpha}$; $\cot \alpha = \frac{1}{tg \alpha}$; $\sec \alpha = \frac{1}{\cos \alpha}$; $\csc \alpha = \frac{1}{\sin \alpha}$.
 - г) Так как $\alpha \in]270^{\circ}; 360^{\circ}[$, то $\cot \alpha = \frac{1}{\tan \alpha}; \tan \alpha = \frac{1}{\cot \alpha};$ $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}; 1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}; 1 + 9 = \frac{1}{\sin^2 \alpha}.$

11. a) $\sin 100^\circ = \sin (90^\circ + 10^\circ)$; б) $\sin 160^\circ = \sin (180^\circ - 20^\circ)$; в) $\cos (180^\circ - 10^\circ)$; г) $tg 165^\circ = tg (90^\circ + 75^\circ)$; д) $ctg (-310^\circ) = -ctg 310^\circ$; е) $\sin (-70^\circ) = -\sin 70^\circ$; ж) $\cos (-215^\circ) = \cos 215^\circ$; з) $tg (-130^\circ) = -tg 130^\circ$. Далее примените формулы приведения.

12. a) $\sin (270^{\circ} - \alpha) = \sin (180^{\circ} + (90^{\circ} - \alpha)) = -\sin (90^{\circ} - \alpha) =$

= $-\cos \alpha$.

13. Используйте формулы приведения тригонометрических функций.

14.
$$\frac{\cos\left(\alpha - \frac{\pi}{2}\right)}{\sin\left(\pi - \alpha\right)} + \frac{\lg\left(\alpha - \pi\right)\cos\left(\pi + \alpha\right)}{\sec\left(1, 5\pi + \alpha\right)} = \frac{\cos\left(\frac{\pi}{2} - \alpha\right)}{\sin\alpha} + \frac{\lg\alpha\left(-\cos\alpha\right)}{\csc\alpha} = \dots$$

Далее упростите.

15.
$$A = \lg (90^{\circ} + 10^{\circ}) + \frac{\sin (360^{\circ} + 170^{\circ})}{1 + \sin (720^{\circ} - 80^{\circ})} = -\operatorname{ctg} 10^{\circ} + \frac{\sin 170^{\circ}}{1 - \sin 80^{\circ}} =$$

$$= -\operatorname{ctg} 10^{\circ} + \frac{\sin 10^{\circ}}{1 - \cos 10^{\circ}} = \frac{-\cos 10^{\circ} (1 - \cos 10^{\circ}) + \sin^{2} 10^{\circ}}{\sin 10^{\circ} (1 - \cos 10^{\circ})} = \dots$$

16.
$$A = (\sin \alpha)^2 + (-\operatorname{tg} \alpha)^2 \cdot (-\operatorname{ctg} \alpha)^2 + \cos \alpha \cdot \cos \alpha = \dots$$

17. A = 1 + 5 = 6.

18.
$$A = \frac{\sin^2 \alpha}{\cos^2 \alpha} \cdot \operatorname{ctg}^2 \alpha = \operatorname{tg}^2 \alpha \cdot \operatorname{ctg}^2 \alpha = 1$$
.

19.
$$A = \frac{\int \lg x + \lg y}{\frac{1}{\lg x} + \frac{1}{\lg y}} = \frac{(\lg x + \lg y) \lg x \cdot \lg y}{\lg y + \lg x} = \dots$$

20.
$$A = \sin^2 x + \cos^2 x + 2 \sin x \cos x + \sin^2 x + \cos^2 x - 2 \sin x \cos x = 2 \sin^2 x + 2 \cos^2 x = \dots$$

21. $A = (\sin^2 x + \cos^2 x) (\sin^2 x - \cos^2 x) + \cos^2 x = \sin^2 x - \cos^2 x + \cos^2 x = \dots$

22.
$$A = \sin \alpha - \sqrt{\operatorname{ctg}^2 \alpha (1 - \sin^2 \alpha)} = \sin \alpha - \sqrt{\operatorname{ctg}^2 \alpha \cdot \cos^2 \alpha} = \sin \alpha - \frac{\cos^2 \alpha}{|\sin \alpha|}$$

Далее учтите, что α є]π; 2π[, и упростите полученное выражение.

23.
$$A = \sqrt{\cos^2 \frac{x}{2}} + \sqrt{\sin^2 \frac{x}{2}} = \left|\cos \frac{x}{2}\right| + \left|\sin \frac{x}{2}\right|.$$

Разделив неравенство $3\pi < x < 4\pi$ почленно на 2, получим $\frac{3\pi}{2} < \frac{x}{2} < 2\pi$, отсюда $\left| \sin \frac{x}{2} \right| = -\sin \frac{x}{2}$ и $\left| \cos \frac{x}{2} \right| = \cos \frac{x}{2}$.

24.
$$A = \frac{\lg \alpha + 1}{\lg \alpha - 1}$$
. Далее подставьте значение $\lg \alpha = \frac{3}{5}$.

25.
$$A = \frac{3 \lg^2 \alpha + 2 \lg \alpha + 1}{\lg^2 \alpha + \lg \alpha - 2} = \dots$$
 Далее подставьте значение $\lg \alpha = 2$.

26.
$$A = \frac{\operatorname{ctg} \alpha}{1 - \operatorname{ctg}^2 \alpha} = \dots$$
 Далее подставьте значение $\operatorname{ctg} \alpha = \frac{3}{4}$.

- 27. a) $\sin^2 x + 2 \sin x \cos x + \cos^2 x = n^2$, отсюда $2 \sin x \cos x = n^2 1$, $A = \dots$
 - 6) $(\sin x \cos x)^2 = 1 2 \sin x \cos x$. $\sin x - \cos x = \pm \sqrt{1 - 2 \sin x \cos x}$.

Подставьте значение $\cos x \sin x$.

- B) $A = (\sin x + \cos x) (\sin^2 x \sin x \cos x + \cos^2 x) =$ = $n(1 - \frac{n^2 - 1}{2}) = ...;$
- r) $A = (\sin^2 x + \cos^2 x) 2\sin^2 x \cos^2 x = 1 2 \cdot \frac{1}{4} (n^2 1)^2 = \dots$
- 28. $A = -\sin^2 \alpha (1 \sin^2 \alpha) + \cos^2 \alpha = -\sin^2 \alpha \cdot \cos^2 \alpha + \cos^2 \alpha = \cos^2 \alpha (1 \sin^2 \alpha) = \dots$
- 29. Выражение $\sqrt{-\lg 2x}$ будет действительным, если — $\lg 2x \geqslant 0$ и $2x \neq \frac{\pi}{2} + \pi k$, т. е. и $\lg 2x \leqslant 0$; $2x \neq \frac{\pi}{2} + \pi k$. Отсюда $\pi k + \frac{\pi}{2} < 2x \leqslant \pi + \pi k$, где k = 0; ± 1 , ...
- 30. $A = \sin^2 \alpha \left(\sin^2 \alpha + \cos^2 \alpha \right) + \cos^2 \alpha = \dots$
- 31. $A = \sin^2 \alpha \cdot \frac{1}{\cos^2 \alpha} = \operatorname{tg}^2 \alpha$.
- 32. $A = \frac{\operatorname{tg^2} \alpha \left(\frac{1}{\operatorname{tg^2} \alpha} + \operatorname{tg^2} \alpha \right)}{\operatorname{tg^2} \alpha + \frac{1}{\operatorname{tg^2} \alpha}} = \operatorname{tg^2} \alpha.$
- 33. $A = 2 tg^2\alpha + tg \alpha + 4 tg \alpha + 2 = 2 (tg^2 \alpha + 1) + 5 tg \alpha = ...$ Далее примените формулу $1 + tg^2 \alpha = \sec^2 \alpha$.
- 34. $A = \frac{(\sin \alpha + \cos \alpha) (\sin^2 \alpha \sin \alpha \cos \alpha + \cos^2 \alpha)}{\sin \alpha + \cos \alpha} = \dots$
- 35. $A = \sin^4 \alpha + \cos^4 \alpha (\sin^2 \alpha + \cos^2 \alpha) (\sin^4 \alpha \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha) = \sin^4 \alpha + \cos^4 \alpha \sin^4 \alpha + \sin^2 \alpha \cos^2 \alpha \cos^4 \alpha = \dots$
- 36. $A = \frac{-\operatorname{tg}^2 \alpha \left(1 \cos^2 \alpha\right)}{-\operatorname{ctg}^2 \alpha \left(1 \sin^2 \alpha\right)} = \frac{-\operatorname{tg}^2 \alpha \sin^2 \alpha}{-\operatorname{ctg}^2 \alpha \cos^2 \alpha} = \dots$
- 37. $A = \frac{\sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha 1}{\cot \alpha (1 \sin^2 \alpha)} = \frac{2\sin \alpha \cos \alpha}{\cot \alpha \cdot \cos^2 \alpha} = \dots$
- 38. $A = \frac{\sin^2 \alpha + \cos^2 \alpha + \cos^2 \alpha 1}{\operatorname{ctg}^2 \alpha} = \frac{\cos^2 \alpha}{\operatorname{ctg}^2 \alpha} = \dots$
- 39. $A = 2 ((\sin^2 \alpha)^3 + (\cos^2 \alpha)^3) + 1 = 2 (\sin^2 \alpha + \cos^2 \alpha) (\sin^4 \alpha \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha) + 1 = 2 (\sin^4 \alpha \sin^2 \alpha \cos^2 \alpha + \cos^4 \alpha) + (\sin^2 \alpha + \cos^2 \alpha)^2 = \dots$ Далее раскройте скобки и приведите подобные члены.

40.
$$A = \left(1 + \frac{\cos \alpha}{\sin \alpha}\right) \sin^3 \alpha + \left(1 + \frac{\sin \alpha}{\cos \alpha}\right) \cos^3 \alpha = \left(\frac{\sin \alpha + \cos \alpha}{\sin \alpha}\right) \sin^3 \alpha + \left(\frac{\sin \alpha + \cos \alpha}{\cos \alpha}\right) \cos^3 \alpha = (\sin \alpha + \cos \alpha) \sin^2 \alpha + (\sin \alpha + \cos \alpha) \cos^2 \alpha = \dots$$

Налее вынесите общий множитель за скобки.

41.
$$A = \frac{(\sin \alpha - \cos \alpha)(\sin \alpha + \cos \alpha)}{(\sin \alpha + \cos \alpha)^2} = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} = \dots$$

Далее числитель и знаменатель разделите почленно на косинус.

КОНТРОЛЬНОЕ ЗАДАНИЕ

Докажите тождества:

1.
$$\frac{tg^2 \alpha}{1 + tg^2 \alpha} \cdot \frac{1 + ctg^2 \alpha}{ctg^2 \alpha} = \frac{1 + tg^4 \alpha}{tg^2 \alpha + ctg^2 \alpha}.$$

2.
$$\frac{1+\cos\alpha}{1-\cos\alpha} - \frac{\sec\alpha-1}{\sec\alpha+1} - 4\operatorname{ctg}^2\alpha = \frac{4}{1+\sec\alpha}.$$

3. $2 (\sin^6 \alpha + \cos^6 \alpha) - 3 (\sin^4 \alpha + \cos^4 \alpha) = -1$. 4. $tg \ 18^\circ tg \ 288^\circ + \sin 32^\circ \sin 148^\circ - \sin 302^\circ \sin 122^\circ = 0$. 5. $tg \ 41^\circ tg \ 42^\circ \cdot \dots \cdot tg \ 49^\circ = 1$.

6. $\lg \sin 1^{\circ} \lg \sin 2^{\circ} \cdot ... \cdot \lg \sin 90^{\circ} = 0$.

7. Дано $\operatorname{tg} \alpha + \operatorname{ctg} \alpha = m$. Определите: a) $tg^2\alpha + ctg^2\alpha$; 6) $tg^3\alpha + ctg^3\alpha$.

8. Докажите, что дробь $\frac{\sin \alpha + \tan \alpha}{\cos \alpha + \cot \alpha}$ не может быть отрицательным числом.

9. Вычислите $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$, если $\log \alpha = 2$.

Ответы

7. a) $m^2 - 2$; 6) $m (m^2 - 3)$. 9. $\frac{1}{3}$.

ЗАДАНИЕ 3

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. РАДИАННОЕ ИЗМЕРЕНИЕ УГЛОВЫХ ВЕЛИЧИН

Кроме градусного измерения угловых величин, будем пользоваться радианным. Радиан — это $\frac{180}{\pi}$ градусов: 1 рад = $\left(\frac{180}{\pi}\right)^{\circ}$. В дальнейшем 1 рад будем обозначать просто 1.

Из определения радиана следует, что $1^{\circ} = \frac{\pi}{180}$, поэтому $\alpha^{\circ} =$

$$=\frac{\pi}{180}\cdot \alpha$$
 радианам. Например, $45^{\circ}=\frac{\pi}{180}\cdot 45=\frac{\pi}{4}$;

$$90^{\circ} = \frac{\pi}{180} \cdot 90 = \frac{\pi}{2}$$
 и т. д.

Поворот на α раднанов будем обозначать R^{α} . Известно, что $R^{\alpha+2\pi n}=R^{\alpha}$, где $n\in {\bf Z}$.

Любому числу α соответствует точка единичной окружности, поэтому будем говорить, что существует отображение множества действительных чисел R на множество точек единичной окружности.

Тригонометрическую функцию угла в α радиан в дальнейшем уже можем называть функцией числа α . Например, $\sin \alpha$ — «синуо числа α ».

Если точка P_{α} , изображающая число α , находится на дуге I четверти единичной окружности, то будем говорить, что число α находится в I четверти и т. д.

§ 2. ЧЕТНОСТЬ И НЕЧЕТНОСТЬ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Определение 1. Функция y = f(x) называется четной, если вместе с каждым значением переменной x из области определения f значение -x также входит в область определения этой функции и при этом выполняется равенство: f(x) = f(-x).

Определение 2. Функция y = f(x) называется нечетной, если вместе с каждым значением переменной x из области определения f значение — x также входит в область определения этой функции и при этом выполняется равенство f(-x) = -f(x).

Из шести тригонометрических функций косинус и секанс — четные, остальные нечетные, т. е.

$$\cos\left(-\alpha\right) = \cos\alpha,\tag{3.1}$$

$$\sin\left(-\alpha\right) = -\sin\alpha, \tag{3.2}$$

$$tg(-\alpha) = -tg\alpha, \qquad (3.3)$$

$$\operatorname{ctg}(-\alpha) = -\operatorname{ctg}\alpha, \tag{3.4}$$

$$\sec (-\alpha) = \sec \alpha, \tag{3.5}$$

$$cosec (-\alpha) = -cosec \alpha. \tag{3.6}$$

§ 3. ПЕРИОДИЧНОСТЬ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Определение 1. Функция y = f(x) называется периодической, если для нее существует такое число $l \neq 0$, что при любом xиз области определения функции числа x-l и x+l также принадлежат этой области и выполняется равенство f(x-l) = f(x) ==f(x+l).

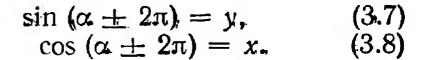
В этом случае число t называется нериодом функции.

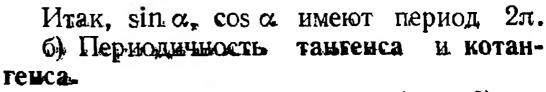
Если наименьший положительный период функции обозначить l_0 , то все периоды этой функции будут кратны l_0 и $l=nl_0$, где $n \in \mathbb{Z}$ и $n \neq 0$.

В дальнейшем периодом функции будем называть наименьший положительный период ее.

а) Периодичность синуса и косинуса.

На единичной окружности (рис. 1) видим, что $\sin \alpha = y$, $\cos \alpha = x$.

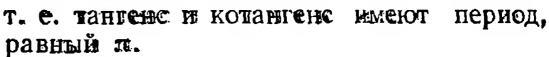


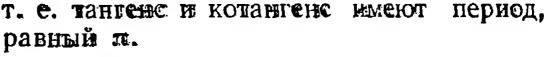


На единичной окружности (рис. 2) видим, что ctg $\alpha = \frac{x}{y}$, tg $\alpha = \frac{y}{x}$, где x и yкоординаты точки.

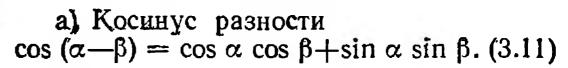
$$tg (\alpha \pm \pi) = tg \alpha, \qquad (3.9)$$

$$ctg (\alpha \pm \pi) = ctg \alpha, \qquad (3.10)$$



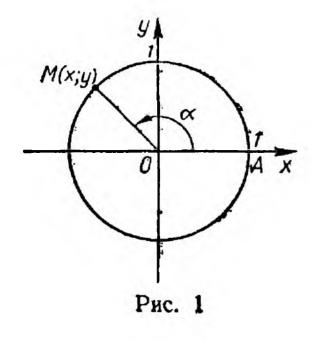


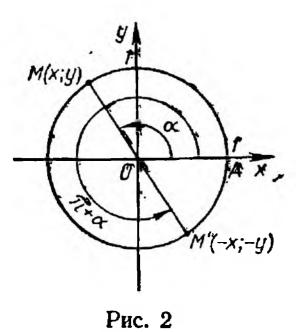
§ 4. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ СУММЫ И РАЗНОСТИ ДВУХ АРГУМЕНТОВ



б) Косинус суммы

 $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$. (3.12)





в) Синус суммы $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$. (3.13)

r) Синус разности $\sin (\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$. (3.14)

д) Тангенс суммы

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha \cdot tg\beta} = \frac{ctg\beta + ctg\alpha}{ctg\alpha ctg\beta - 1}.$$
 (3.15)

е) Тангенс разности

$$tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta} = \frac{ctg\beta - ctg\alpha}{ctg\alpha ctg\beta + 1}.$$
 (3.16)

УПРАЖНЕНИЯ

- 1. Вычислите $\sin{(\alpha + \beta)}$, $\cos{(\alpha \beta)}$, $tg{(\alpha + \beta)}$, если $\cos{\alpha} = \frac{3}{5}$; $\cos{\beta} = \frac{12}{13}$ и числа α и β нажодятся в IV четверти.
- **2.** Покажите, что $\hat{\alpha} + \hat{\beta} = 90^{\circ}$, если $\sin \alpha = \frac{8}{17}$ и $\sin \beta = \frac{15}{17}$, причем α и β углы положительные, острые.
- 3. Вычислите синус, косинус, тангенс и котангенс углов: 15°, 75°, 105°.
- 4. Выразите sin 3α, cos 3α и tg 3α через функции числа α.
- 5. Дано $\lg \alpha = \frac{1}{12}$, $\lg \alpha = \frac{2}{5}$, $\lg \gamma = \frac{1}{3}$, α , β , γ острые положительные углы. Докажите, что $\alpha + \beta + \gamma = 45^{\circ}$.
- 6. Найдите $\sin\left(\alpha-\frac{\pi}{6}\right)-\cos\left(\alpha+\frac{2\pi}{3}\right)$, если $\cos\alpha=\frac{1}{3}$.
- 7. Выразите $\sin{(\alpha + \beta + \gamma)}$ и $\cos{(\alpha + \beta + \gamma)}$ через тригонометрические функции чисел α , β , γ .

Упростите выражения:

8.
$$\frac{\cos\frac{\pi}{30}\cos\frac{\pi}{15} + \sin\frac{\pi}{30}\sin\frac{\pi}{15}}{\sin\frac{7\pi}{30}\cos\frac{4\pi}{15} + \cos\frac{7\pi}{30}\sin\frac{4\pi}{15}}.$$

9.
$$\frac{\sin{(45^{\circ} + \alpha)} - \cos{(45^{\circ} + \alpha)}}{\sin{(45^{\circ} + \alpha)} + \cos{(45^{\circ} + \alpha)}}$$
.

10. $\sin 6\alpha \cot 3\alpha - \cos 6\alpha$.

11. a)
$$\sin 20^{\circ} + 2 \sin 40^{\circ} - \sin 100^{\circ}$$
;
b) $\cos 10^{\circ} - 2 \cos 50^{\circ} - \cos 70^{\circ}$.

12. a)
$$\frac{\sqrt{2}\cos\alpha - 2\cos(45^{\circ} - \alpha)}{2\sin(30^{\circ} + \alpha) - \sqrt{3}\sin\alpha}$$
; b) $\frac{\sin\alpha + 2\sin(60^{\circ} - \alpha)}{2\cos(30^{\circ} - \alpha) - \sqrt{3}\cos\alpha}$.

13. a)
$$\frac{\sin \frac{\pi}{2} - tg (45^{\circ} + \beta) tg (45^{\circ} + 3\beta)}{tg (45^{\circ} + \beta) + ctg (45^{\circ} - 3\beta)};$$

6)
$$\frac{\operatorname{tg}\left(\frac{\pi}{8} + \alpha\right) + \operatorname{tg}\left(\frac{\pi}{8} - \alpha\right)}{1 - \operatorname{tg}\left(\frac{\pi}{8} + \alpha\right)\operatorname{tg}\left(\frac{\pi}{8} - \alpha\right)};$$

B)
$$\frac{\lg \frac{\pi}{9} + \lg \frac{5}{36}\pi}{1 + \lg \frac{8\pi}{9} \lg \frac{5\pi}{36}}$$
.

14.
$$(tg \alpha - tg \beta) ctg (\alpha - \beta) - tg \alpha tg \beta$$
.

15.
$$\frac{3 \operatorname{ctg}^2 15^\circ - 1}{3 - \operatorname{ctg}^2 15^\circ}.$$

16.
$$\frac{1}{\operatorname{tg}(\alpha+\beta)+\operatorname{ctg}\beta}\cdot\frac{\cos(\pi+\alpha)}{\cos(\frac{3\pi}{2}+\beta)}.$$

С помощью формул приведения упростите выражения:

17.
$$\sin\left(\frac{\pi}{2}-\alpha\right)-\cos\left(\pi-\alpha\right)+\operatorname{tg}\left(\pi-\alpha\right)-\operatorname{ctg}\left(\frac{3\pi}{2}+\alpha\right)$$
.

18.
$$\frac{\cos\left(\alpha-\frac{\pi}{2}\right)}{\sin\left(\pi-\alpha\right)}+\frac{\mathrm{tg}\left(\alpha-\pi\right)\cos\left(\pi+\gamma\right)}{\mathrm{sec}\left(\frac{3\pi}{2}+\alpha\right)}.$$

19.
$$(tg (90^{\circ} - \alpha) - ctg (90^{\circ} + \alpha))^{2} - (ctg (180^{\circ} + \alpha) + ctg (270^{\circ} + \alpha))^{2}$$
.

20.
$$tg 100^{\circ} + \frac{\sin 530^{\circ}}{1 + \sin 640^{\circ}}$$

21.
$$\frac{\sin{(2\pi-\alpha)} \operatorname{tg}\left(\frac{\pi}{2}+\alpha\right) \operatorname{ctg}\left(\frac{3\pi}{2}-\alpha\right)}{\cos{(2\pi+\alpha)} \operatorname{tg}(\pi+\alpha)}.$$

22.
$$\sin^2(\pi - x) + \lg^2(\pi - x) \lg^2(\frac{3\pi}{2} + x) + \sin(\frac{\pi}{2} + x) \cos(x - 2\pi)$$
.

23.
$$tg^2(-4.7\pi) \cos^2(-7.8\pi) + \sin^2(-11.7\pi)$$
.

Докажите тождества:

24.
$$\frac{\sin (30^{\circ} + \alpha) - \cos (60^{\circ} + \alpha)}{\sin (30^{\circ} + \alpha) + \cos (60^{\circ} + \alpha)} = \sqrt{3} \lg \alpha$$
.

25.
$$\frac{2\sin\alpha\cos\beta-\sin(\alpha-\beta)}{\cos(\alpha-\beta)-2\sin\alpha\sin\beta}=\operatorname{tg}(\alpha+\beta).$$

26.
$$\frac{\cos \alpha \sin (\alpha - 3) - \sin \alpha \cos (3 - \alpha)}{\cos \left(3 - \frac{\pi}{6}\right) - 0.5 \sin 3} = -\frac{2 \log 3}{\sqrt{3}}.$$

27.
$$\frac{\sqrt{2}\cos\alpha - 2\cos(45^{\circ} + \alpha)}{2\sin(45^{\circ} + \alpha) - \sqrt{2}\sin\alpha} = \lg\alpha.$$

28.
$$1 + tg \alpha tg \beta = \frac{\cos (\alpha - \beta)}{\cos \alpha \cos \beta}$$
.

29.
$$\operatorname{ctg} \alpha + \operatorname{ctg} \left(\frac{\pi}{2} - \alpha \right) = \frac{1}{\sin \alpha} \cdot \frac{1}{\cos \alpha}$$
.

30.
$$\sin 200^{\circ} \sin 310^{\circ} + \cos 340^{\circ} \cos 50^{\circ} = \frac{\sqrt{3}}{2}$$
.

31. $\sin 4\alpha + \cos 4\alpha \cot 2\alpha = \cot 2\alpha$.

32.
$$\cos(x - y) - \sin x \sin^3 y - \cos x \cos^3 y = \sin y \cos y \sin (x + y)$$
.

33. a)
$$\sin \alpha \sin (\beta + \gamma) - \sin \beta \sin (\gamma + \alpha) + \sin \gamma \sin (\alpha + \beta) =$$

= $2 \sin \alpha \cos \beta \sin \gamma$;

6)
$$\cos \alpha \cos (\beta + \gamma) - \cos \beta \cos (\gamma + \alpha) + \cos \gamma \cos (\alpha - \beta) = \cos (\alpha - \beta - \gamma)$$
.

34.
$$tg(\alpha + \beta) - tg\alpha - tg\beta = tg(\alpha + \beta) tg\alpha \cdot tg\beta$$
.

35.
$$\frac{\operatorname{ctg}(\alpha+\beta)-\operatorname{ctg}\beta}{\operatorname{ctg}(\alpha-\beta)+\operatorname{ctg}\beta}=\frac{\sin(\beta-\alpha)}{\sin(\beta+\alpha)}.$$

36.
$$\frac{\operatorname{tg}\alpha + \operatorname{tg}\beta}{\operatorname{tg}(\alpha + \beta)} + \frac{\operatorname{tg}\alpha - \operatorname{tg}\beta}{\operatorname{tg}(\alpha - \beta)} = 2.$$

37.
$$tg 3\alpha - tg 2\alpha - tg \alpha = tg \alpha tg 2\alpha tg 3\alpha$$
.

38.
$$\lg \alpha \lg \beta + \lg \beta \lg \gamma + \lg \gamma \lg \alpha = 1$$
, если $\alpha + \beta + \gamma = \frac{\pi}{2}$.

39.
$$tg n\alpha + tg n\beta + tg n\gamma = tg n\alpha tg n\gamma tg n\beta$$
, если $\alpha + \beta + \gamma = \pi$, $n \in \mathbb{Z}$.

Ответы

1.
$$\sin{(\alpha + \beta)} = -\frac{63}{65}$$
; $\cos{(\alpha - \beta)} = \frac{56}{65}$; $\tan{(\alpha + \beta)} = -\frac{63}{16}$.

2.
$$\sin{(\alpha + \beta)} = 1$$
.

2.
$$\sin{(\alpha + \beta)} = 1$$
.
3. $\sin{15^\circ} = \frac{\sqrt{2}}{4} (\sqrt{3} - 1);$ $\sin{75^\circ} = \frac{\sqrt{2}}{4} (\sqrt{3} + 1);$ $\sin{105^\circ} = \frac{\sqrt{2}}{4} (\sqrt{3} + 1);$ $\cos{15^\circ} = \frac{\sqrt{2}}{4} (\sqrt{3} + 1);$ $\cos{75^\circ} = \frac{\sqrt{2}}{4} (\sqrt{3} - 1);$ $\cos{105^\circ} = \frac{\sqrt{2}}{4} (1 - \sqrt{3});$ $\tan{105^\circ} = \frac{\sqrt{2}}{4} (\sqrt{3} - 1);$ $\tan{105^\circ} = \frac{\sqrt{2}}{4} (1 - \sqrt{3});$ $\tan{105^\circ$

4.
$$\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha$$
;
 $\cos 3\alpha = 4 \cos^3 \alpha - 3 \cos \alpha$;
 $\tan 3\alpha = \frac{3 \tan \alpha - \tan^3 \alpha}{1 - 3 \tan^3 \alpha}$.

5. Так как
$$tg(\alpha + \beta + \gamma) = 1$$
, то $\alpha + \beta + \gamma = 45^{\circ}$. 6. $\frac{\pm 2\sqrt{6}}{3}$.

- 7. $\sin (\alpha + \beta + \gamma) = \sin \alpha \cos \beta \cos \gamma + \sin \beta \cos \alpha \cos \gamma + \sin \gamma \cos \alpha \cos \beta \sin \alpha \sin \beta \sin \gamma;$ $\cos (\alpha + \beta + \gamma) = \cos \alpha \cos \beta \cos \gamma \sin \alpha \sin \beta \cos \gamma \sin \alpha \cos \beta \sin \gamma \sin \beta \cos \alpha \sin \gamma.$
- 8. $\cos \frac{\pi}{30}$. 9. $\tan \alpha$. 10. 1. 11. a) $\sin 40^\circ$; 6)— $\sin 40^\circ$. 12. a) $-\sqrt{2} \tan \alpha$;

6) $\sqrt{3}$ ctg α . 13. a) —tg 4β ; 6) 1; B) 1. 14. 1. 15. ctg 15°. 16. —cos $(\alpha + \beta)$. 17. 2 cos α . 18. cos² α .

19. 4. 20. $\frac{1}{\sin 10^{\circ}}$. 21. 1. 22. 2. 23. $tg^2 0.3\pi$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- 1. Используйте формулы сложения для синуса суммы, косинуса разности и тангенса суммы. С помощью тождества $\sin^2 x + \cos^2 x = 1$ найдите синусы углов. Учтите, что числа α и β находятся в IV четверти.
- 2. $\alpha + \beta = 90^{\circ}$ в том случае, когда $\sin{(\alpha + \beta)} = 1$. По данным синусам найдите соответствующие косинусы и вычислите $\sin{(\alpha + \beta)}$. (См. 1.)
- 3. Представьте данные углы в виде: $15^{\circ} = 45^{\circ} 30^{\circ}$, $75^{\circ} = 45^{\circ} + 30^{\circ}$, $105^{\circ} = 60^{\circ} + 45^{\circ}$ и примените соответствующие формулы сложения для тригонометрических функций.
- **4.** Представьте угол $3\alpha = 2\alpha + \alpha$ и примените формулы сложения и формулы двойного аргумента для тригонометрических функций.
- 5. $\alpha + \beta + \gamma = 45^{\circ}$ в том случае, если $\lg (\alpha + \beta + \gamma) = 1$. Вычислите $\lg (\alpha + \beta + \gamma) = \lg ((\alpha + \beta) + \gamma)$.
- 6. По данному косинусу определите синус. Затем используйте формулы сложения для синуса и косинуса.
- 7. Представьте $\sin (\alpha + \beta + \gamma)$ в виде $\sin ((\alpha + \beta) + \gamma)$. Аналогично представьте и косинус.
- 8. Числитель данной дроби представляет собой косинус разности, знаменатель синус суммы.
- 9. Используйте формулы сложения для синуса и косинуса суммы.
- 10. Выразите ctg 3α через синус и косинус соответствующих аргументов. Затем выполните вычитание дробей.
- 11. a) Представьте углы 20°, 40° и 100° соответственно в виде 30° — 10°, 30° + 10° и 90° + 10°.

- б) Углы 10° , 50° и 70° представьте в виде $30^{\circ} 20^{\circ}$, $30^{\circ} + 20^{\circ}$, $90^{\circ} 20^{\circ}$.
- 12. a) Примените формулы косинуса разности и синуса суммы. б) Пример аналогичен предыдущему.
- 13. a) Значение $\sin \frac{\pi}{2}$ замените числовым значением. По формулам приведения ctg (45° 3 β) замените на tg (45° + 3 β) и примените формулу котангенса суммы.
 - б) Примените формулу для тангенса суммы.
 - в) Значение $tg \frac{8\pi}{9}$ выразите через тангенс острого угла, пользуясь формулами приведения

$$\operatorname{tg}\frac{8\pi}{9} = \operatorname{tg}\left(\pi - \frac{\pi}{9}\right) = -\operatorname{tg}\frac{\pi}{9}.$$

- 14. Примените формулу котангенса разности.
- 15. Примените равенство $3 = (\sqrt{3})^2 = \text{ctg}^2 \ 30^\circ$. Затем числитель и знаменатель полученного выражения разложите на множители и воспользуйтесь формулами котангенса суммы и разности.
- 16. Упростите второй сомножитель по формулам приведения. Тангенс и котангенс выразите через синус и косинус соответствующих аргументов.
- 17. Используйте формулы приведения тригонометрических функций.
- 18. Используйте свойства четности косинуса и периодичности тангенса. Примените формулы приведения.
- 19. Упростите выражения в скобках с помощью формул приведения. Примените формулу для разности квадратов двух выражений.
- 20. Использовав формулы приведения и свойства периодичности, приведите тригонометрические функции к функциям острого угла.
- 21. Примените формулы приведения и свойство периодичности тригонометрических функций.
- 22. См. пример 21.
- 23. Применив свойства периодичности, приведите тригонометрические функции к функциям острого угла.
- 24. Примените формулы синуса и косинуса суммы.
- 25. Используйте формулы синуса разности и косинуса разности.
- 26. Воспользовавшись свойством четности косинуса, представьте числитель в виде синуса разности. В знаменателе примените формулу косинуса разности.
- 27. См. пример 23.
- 28. Тангенсы выразить через синусы и косинусы соответствующих аргументов.
- 29. Применив формулу приведения, выразите левую часть через синусы и косинусы.

4.
$$\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha;$$

 $\cos 3\alpha = 4 \cos^3 \alpha - 3 \cos \alpha;$
 $tg 3\alpha = \frac{3 tg \alpha - tg^3 \alpha}{1 - 3 tg^2 \alpha}.$

5. Так как
$$tg(\alpha + \beta + \gamma) = 1$$
, то $\alpha + \beta + \gamma = 45^{\circ}$. 6. $\frac{\pm 2\sqrt{6}}{3}$.

- 7. $\sin (\alpha + \beta + \gamma) = \sin \alpha \cos \beta \cos \gamma + \sin \beta \cos \alpha \cos \gamma + \sin \gamma \cos \alpha \cos \beta \sin \alpha \sin \beta \sin \gamma;$ $\cos (\alpha + \beta + \gamma) = \cos \alpha \cos \beta \cos \gamma \sin \alpha \sin \beta \cos \gamma \sin \alpha \cos \beta \sin \gamma \sin \beta \cos \alpha \sin \gamma.$
- 8. $\cos \frac{\pi}{30}$. 9. $tg \alpha$. 10. 1. 11. a) $\sin 40^\circ$; 6)— $\sin 40^\circ$. 12. a) $-\sqrt{2}tg \alpha$;

6) $\sqrt{3}$ ctg α . 13. a) —tg 4β ; 6) 1; B) 1. 14. 1. 15. ctg 15°. 16. —cos $(\alpha + \beta)$. 17. 2 cos α . 18. cos² α .

19. 4. 20. $\frac{1}{\sin 10^{\circ}}$. 21. 1. 22. 2. 23. $tg^2 0.3\pi$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- 1. Используйте формулы сложения для синуса суммы, косинуса разности и тангенса суммы. С помощью тождества $\sin^2 x + \cos^2 x = 1$ найдите синусы углов. Учтите, что числа α и β находятся в IV четверти.
- 2. $\alpha + \beta = 90^{\circ}$ в том случае, когда sin ($\alpha + \beta$) = 1. По данным синусам найдите соответствующие косинусы и вычислите sin ($\alpha + \beta$). (См. 1.)
- 3. Представьте данные углы в виде: $15^{\circ} = 45^{\circ} 30^{\circ}$, $75^{\circ} = 45^{\circ} + 30^{\circ}$, $105^{\circ} = 60^{\circ} + 45^{\circ}$ и примените соответствующие формулы сложения для тригонометрических функций.
- **4.** Представьте угол $3\alpha = 2\alpha + \alpha$ и примените формулы сложения и формулы двойного аргумента для тригонометрических функций.
- 5. $\alpha + \beta + \gamma = 45^{\circ}$ в том случае, если $\lg (\alpha + \beta + \gamma) = 1$. Вычислите $\lg (\alpha + \beta + \gamma) = \lg ((\alpha + \beta) + \gamma)$.
- 6. По данному косинусу определите синус. Затем используйте формулы сложения для синуса и косинуса.
- 7. Представьте $\sin (\alpha + \beta + \gamma)$ в виде $\sin ((\alpha + \beta) + \gamma)$. Аналогично представьте и косинус.
- 8. Числитель данной дроби представляет собой косинус разности, знаменатель синус суммы.
- 9. Используйте формулы сложения для синуса и косинуса суммы.
- 10. Выразите ctg 3 смерез синус и косинус соответствующих аргументов. Затем выполните вычитание дробей.
- 11. a) Представьте углы 20°, 40° и 100° соответственно в виде 30° — 10°, 30° + 10° и 90° + 10°.

- б) Углы 10° , 50° и 70° представьте в виде $30^{\circ} 20^{\circ}$, $30^{\circ} + 20^{\circ}$, $90^{\circ} 20^{\circ}$.
- 12. a) Примените формулы косинуса разности и синуса суммы. б) Пример аналогичен предыдущему.
- 13. а) Значение $\sin \frac{\pi}{2}$ замените числовым значением. По формулам приведения ctg (45° 3 β) замените на tg (45° + 3 β) и примените формулу котангенса суммы.
 - б) Примените формулу для тангенса суммы.
 - в) Значение $tg \frac{8\pi}{9}$ выразите через тангенс острого угла, пользуясь формулами приведения

$$tg\frac{8\pi}{9} = tg\left(\pi - \frac{\pi}{9}\right) = -tg\frac{\pi}{9}.$$

- 14. Примените формулу котангенса разности.
- 15. Примените равенство $3 = (\sqrt{3})^2 = \text{ctg}^2 \ 30^\circ$. Затем числитель и знаменатель полученного выражения разложите на множители и воспользуйтесь формулами котангенса суммы и разности.
- 16. Упростите второй сомножитель по формулам приведения. Тангенс и котангенс выразите через синус и косинус соответствующих аргументов.
- 17. Используйте формулы приведения тригонометрических функций.
- 18. Используйте свойства четности косинуса и периодичности тангенса. Примените формулы приведения.
- 19. Упростите выражения в скобках с помощью формул приведения. Примените формулу для разности квадратов двух выражений.
- 20. Использовав формулы приведения и свойства периодичности, приведите тригонометрические функции к функциям острого угла.
- 21. Примените формулы приведения и свойство периодичности тригонометрических функций.
- 22. См. пример 21.
- 23. Применив свойства периодичности, приведите тригонометрические функции к функциям острого угла.
- 24. Примените формулы синуса и косинуса суммы.
- 25. Используйте формулы синуса разности и косинуса разности.
- 26. Воспользовавшись свойством четности косинуса, представьте числитель в виде синуса разности. В знаменателе примените формулу косинуса разности.
- 27. См. пример 23.
- 28. Тангенсы выразить через синусы и косинусы соответствующих аргументов.
- 29. Применив формулу приведения, выразите левую часть через синусы и косинусы.

- 30. Приведите тригонометрические функции к функциям острого угла.
- 31. Выразите котангенс через синус и косинус. Выполните сложение.
- 32. Примените формулу косинуса разности и, сгруппировав члены с общими множителями, вынесите эти множители за скобки.
- **33.** а) Воспользовавшись формулой синуса суммы, выполните действие умножения.
 - б) Примените формулы косинуса суммы и разности, произведите умножение.
- **34.** Примените формулу тангенса суммы, сгруппировав второе и третье слагаемые. Вынесите общий множитель за скобки.
- 35. Выразите котангенсы через синусы и косинусы, выполните в числителе вычитание, а в знаменателе сложение дробей.
- **36.** Используйте формулы тангенса суммы и разности и произведите указанные действия.
- 37. Сгруппировав последние два слагаемых, умножьте и разделите полученное выражение на (1 tg 2α tg α), а затем примените формулу тангенса суммы.
- 38. Сгруппировав последние два слагаемых, вынесите $\lg \alpha$ за скобки. Учитывая, что $\alpha + \beta + \gamma = \frac{\pi}{2}$, исключите γ . Далее примените формулу приведения для тангенса.
- 39. Сгруппировав последние два слагаемых, умножьте и разделите их сумму на выражение (1 $tg \, n \, \beta \, tg \, n \, \gamma$). Примените формулу тангенса суммы и замените $\beta + \alpha$ через $\pi \alpha$.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

1.
$$\sin \alpha = -\sqrt{1-\cos^2 \alpha}$$
, так как $\frac{3}{2}\pi \leqslant \alpha \leqslant 2\pi$, $\sin \alpha = -\sqrt{1-\frac{9}{25}} = -\frac{4}{5}$, $\sin \beta = -\sqrt{1-\frac{144}{169}} = -\frac{5}{13}$, $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = -\frac{4}{5} \cdot \frac{12}{13} + \frac{3}{5} \cdot \left(-\frac{5}{13}\right) = \dots$. Аналогично $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$.

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta}$$
, где $tg\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{-\frac{4}{5}}{\frac{3}{5}} = -\frac{4}{3}$, $tg\beta = -\frac{5}{12}$.

2.
$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \frac{15}{17}, \cos \beta = \sqrt{1 - \left(\frac{15}{17}\right)^2} = \frac{8}{17}, \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \frac{8}{17} \cdot \frac{8}{17} + \frac{15}{17} \cdot \frac{15}{17} = \dots$$

3.
$$\sin 15^{\circ} = \sin (45^{\circ} - 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \times \sin 30^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \dots$$
, $\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \times \sin 30^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \dots$, $\sin 105^{\circ} = \sin (60^{\circ} + 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \times \sin 45^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \dots$, $\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \times \times \sin 30^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \dots$, $\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \dots$, $\cos 105^{\circ} = \cos (60^{\circ} + 45^{\circ}) = \cos 60^{\circ} \cos 45^{\circ} - \sin 60^{\circ} \sin 45^{\circ} = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \dots$, $\tan 15^{\circ} = \tan 15^{\circ} + \tan$

4. $\sin 3\alpha = \sin (2\alpha + \alpha) = \sin 2\alpha \cos \alpha + \sin \alpha \cos 2\alpha =$ = $2 \sin \alpha \cos^2 \alpha + \sin \alpha (1 - 2 \sin^2 \alpha) = 2 \sin \alpha - 2 \sin^3 \alpha +$ + $\sin \alpha - 2 \sin^3 \alpha = \dots$ Аналогично для $\cos 3\alpha$.

$$\begin{split} \lg 3\alpha &= \lg \left(2\alpha + \alpha \right) = \frac{\lg 2\alpha + \lg \alpha}{1 - \lg 2\alpha \lg \alpha} = \frac{\frac{2 \lg \alpha}{1 - \lg^2 \alpha} + \lg \alpha}{1 - \lg^2 \alpha} = \\ &= \frac{\left(2 \lg \alpha + \lg \alpha - \lg^3 \alpha \right) \left(1 - \lg^2 \alpha \right)}{\left(1 - \lg^2 \alpha \right) \left(1 - \lg^2 \alpha \right)} = \dots \\ &= \frac{(2 \lg \alpha + \lg \alpha - \lg^3 \alpha) \left(1 - \lg^2 \alpha \right)}{(1 - \lg^2 \alpha) \left(1 - \lg^2 \alpha - 2 \lg^2 \alpha \right)} = \dots \end{split}$$
Далее упростите.

5. $tg(\alpha + \beta + \gamma) = tg((\alpha + \beta) + \gamma) = \frac{tg(\alpha + \beta) + tg\gamma}{1 - tg(\alpha + \beta) tg\gamma} = ...$

6.
$$\sin\left(\alpha - \frac{\pi}{6}\right) - \cos\left(\alpha + \frac{2}{3}\pi\right) = \sin\alpha\cos\frac{\pi}{6} - \cos\alpha\sin\frac{\pi}{6} - \cos\alpha\cos\frac{2}{3}\pi + \sin\alpha\sin\frac{2}{3}\pi = \frac{\sqrt{3}}{2}\sin\alpha - \frac{1}{2}\cos\alpha + \frac{1}{2}\cos\alpha + \frac{\sqrt{3}}{2}\sin\alpha = \sqrt{3}\sin\alpha,$$

 $\sin\alpha = \pm\sqrt{1-\cos^2\alpha} = \pm\sqrt{1-\frac{1}{9}}.$

7.
$$\sin (\alpha + \beta + \gamma) = \sin ((\alpha + \beta) + \gamma) = \sin (\alpha + \beta) \cos \gamma + \cos (\alpha + \beta) \sin \gamma = \sin \alpha \cos \beta \cos \gamma + \sin \beta \cos \alpha \cos \gamma + \cos \alpha \cos \beta \sin \gamma + (-\sin \alpha \sin \beta) \sin \gamma = ...$$

Аналогично $\cos (\alpha + \beta + \gamma) = \cos ((\alpha + \beta) + \gamma) = \cos (\alpha + \beta) \cos \gamma - \sin (\alpha + \beta) \sin \gamma$ и т. д.

8.
$$A = \frac{\cos\left(\frac{\pi}{30} - \frac{\pi}{15}\right)}{\sin\left(\frac{7\pi}{30} + \frac{4\pi}{15}\right)} = \dots$$

9.
$$A = \frac{\sin 45^{\circ} \cos \alpha + \cos 45^{\circ} \sin \alpha - \cos 45^{\circ} \cos \alpha + \sin 45^{\circ} \sin \alpha}{\sin 45^{\circ} \cos \alpha + \cos 45^{\circ} \sin \alpha + \cos 45^{\circ} \cos \alpha - \sin 45^{\circ} \sin \alpha} = \dots$$

Далее подставьте числовые значения тригонометрических функций, приведите подобные члены.

10.
$$A = \sin 6\alpha \frac{\cos 3\alpha}{\sin 3\alpha} - \cos 6\alpha = \frac{\sin 6\alpha \cos 3\alpha - \cos 6\alpha \sin 3\alpha}{\sin 3\alpha}$$
.

Примените формулу синуса разности.

11. a)
$$A = \sin (30^{\circ} - 10^{\circ}) + 2 \sin (30^{\circ} + 10^{\circ}) - \cos 10^{\circ} = \sin 30^{\circ} \cos 10^{\circ} - \sin 10^{\circ} \cos 30^{\circ} + 2 \sin 30^{\circ} \cos 10^{\circ} + 2 \cos 30^{\circ} \sin 10^{\circ} - \cos 10^{\circ} = \sin 30^{\circ} \cos 10^{\circ} + \sin 10^{\circ} \cos 30^{\circ}$$
. Примените формулу синуса суммы. 6) $A = \cos (30^{\circ} - 20^{\circ}) - 2 \cos (30^{\circ} + 20^{\circ}) - \cos 70^{\circ} = \dots$

12. a)
$$A = \frac{\sqrt{2}\cos\alpha - 2\cos 45^{\circ}\cos\alpha - 2\sin 45^{\circ}\sin\alpha}{2\sin 30^{\circ}\cos\alpha + 2\sin\alpha\cos 30^{\circ} - \sqrt{3}\sin\alpha} = \frac{\sqrt{2}\cos\alpha - 2\cdot\frac{\sqrt{2}}{2}\cos\alpha - 2\cdot\frac{\sqrt{2}}{2}\sin\alpha}{2\cdot\frac{1}{2}\cos\alpha + 2\cdot\frac{\sqrt{3}}{2}\sin\alpha - \sqrt{3}\sin\alpha}$$

Приведите подобные члены.

6)
$$A = \frac{\sin \alpha + 2 \sin 60^{\circ} \cos \alpha - 2 \cos 60^{\circ} \sin \alpha}{2 \cos 30^{\circ} \cos \alpha + 2 \sin 30^{\circ} \sin \alpha - \sqrt{3} \cos \alpha}$$

13. a)
$$A = \frac{1 - \lg(45^\circ + \beta) \lg(45^\circ + 3\beta)}{\lg(45^\circ + \beta) + \lg(45^\circ + 3\beta)} = \operatorname{ctg}(45^\circ + \beta + 45^\circ + 3\beta) = \operatorname{ctg}(90^\circ + 4\beta);$$

6)
$$A = tg\left(\frac{\pi}{8} + \alpha + \frac{\pi}{8} - \alpha\right)$$
;

B)
$$A = \frac{\lg \frac{\pi}{9} + \lg \frac{5\pi}{36}}{1 - \lg \frac{\pi}{9} \lg \frac{5\pi}{36}} = \lg \left(\frac{\pi}{9} + \frac{5\pi}{36}\right).$$

14.
$$A = \frac{(\lg \alpha - \lg \beta)(1 + \lg \alpha \lg \beta)}{\lg \alpha - \lg \beta} - \lg \alpha \lg \beta$$
.

Сократите дробь и приведите подобные члены.

15.
$$A = \frac{\text{ctg}^2 30^\circ \text{ctg}^2 15^\circ - 1}{\text{ctg}^2 30^\circ - \text{ctg}^2 15^\circ} = \frac{\text{ctg} 30^\circ \text{ctg} 15^\circ + 1}{\text{ctg} 30^\circ - \text{ctg} 15^\circ} \cdot \frac{\text{ctg} 30^\circ \text{ctg} 15^\circ - 1}{\text{ctg} 30^\circ + \text{ctg} 15^\circ}$$

Примените формулы котангенса суммы и разности.

16.
$$A = \frac{1}{\operatorname{tg}(\alpha + \beta) + \operatorname{ctg}\beta} \cdot \frac{-\cos\alpha}{\sin\beta} = \frac{1}{\frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} + \frac{\cos\beta}{\sin\beta}} \times \frac{-\cos\alpha}{\sin\beta} = \frac{1}{\frac{\sin(\alpha + \beta)\sin\beta}{\sin\beta} + \cos\beta\cos(\alpha + \beta)} \cdot \frac{-\cos\alpha}{\sin\beta}$$

Примените формулу косинуса разности.

- 17. $A = \cos \alpha + \cos \alpha tg \alpha + tg \alpha$.
- 18. Учитывая, что является одним из периодов тангенса, и используя четность косинуса, получим:

$$A = \frac{\cos\left(\frac{\pi}{2} - \alpha\right)}{\sin\left(\pi - \alpha\right)} + \frac{\tan\alpha\left(-\cos\alpha\right)}{\cos\alpha} = \frac{\sin\alpha}{\sin\alpha} + \frac{\tan\alpha\left(-\cos\alpha\right)}{\frac{1}{\sin\alpha}}.$$

Далее упростите.

19. $A = (\operatorname{ctg} \alpha + \operatorname{tg} \alpha)^2 - (\operatorname{ctg} \alpha - \operatorname{tg} \alpha)^2 = (\operatorname{ctg} \alpha + \operatorname{tg} \alpha + \operatorname{ctg} \alpha - \operatorname{tg} \alpha) (\operatorname{ctg} \alpha + \operatorname{tg} \alpha - \operatorname{ctg} \alpha + \operatorname{tg} \alpha).$ В скобках приведите подобные члены.

20.
$$A = tg(90^{\circ} + 10^{\circ}) + \frac{\sin(360^{\circ} + 170^{\circ})}{1 + \sin(720^{\circ} - 80^{\circ})} = -ctg(10^{\circ} + \frac{\sin(170^{\circ})}{1 + \sin(-80^{\circ})}) = -ctg(10^{\circ} + \frac{\sin(10^{\circ})}{1 - \cos(10^{\circ})}) = -ctg(10^{\circ} + \frac{\sin(10^{\circ})}{1 + \sin(10^{\circ})}) = -ctg(10^{\circ} + \frac{\sin(10^{\circ})}{1 + \cos(10^{\circ})}) = -ctg(10^{\circ} + \frac{\cos(10^{\circ})}{1 + \cos(10^{\circ})}) = -ctg(10^{\circ} + \frac{\cos(10^{\circ})}{1 + \cos(10^{\circ})}) = -ctg(10^{\circ} + \frac{\cos(10^{\circ})}$$

21.
$$A = \frac{-\sin\alpha (-\cot\alpha) \tan\alpha}{\cos\alpha \tan\alpha}$$
.

- 22. $A = (\sin x)^2 + (-\operatorname{tg} x)^2 (-\operatorname{ctg} x)^2 + \cos x \cos x = \sin^2 x + \operatorname{tg}^2 x \operatorname{ctg}^2 x + \cos^2 x$.
- 23. $A = tg^2 (-4.7\pi + 5\pi) \cos^2 (-7.8\pi + 8\pi) + \sin^2 (-11.7\pi + 12\pi) = tg^2 0.3\pi \cos^2 0.2\pi + \sin^2 0.3\pi$.

Далее учтите, что $\cos \alpha = \sin \left(\frac{\pi}{2} - \alpha\right)$, поэтому $\cos 0.2\pi = \sin 0.3\pi$.

24.
$$A = \frac{\sin 30^{\circ} \cos \alpha + \cos 30^{\circ} \sin \alpha - \cos 60^{\circ} \cos \alpha + \sin 60^{\circ} \sin \alpha}{\sin 30^{\circ} \cos \alpha + \cos 30^{\circ} \sin \alpha + \cos 60^{\circ} \cos \alpha - \sin 60^{\circ} \sin \alpha} = \frac{\sqrt{3}}{2} \sin \alpha + \frac{\sqrt{3}}{2} \sin \alpha}{\frac{1}{2} \cos \alpha + \frac{1}{2} \cos \alpha}$$

25.
$$\Lambda = \frac{2 \sin \alpha \cos \beta - \sin \alpha \cos \beta + \sin \beta \cos \alpha}{\cos \alpha \cos \beta + \sin \alpha \sin \beta - 2 \sin \alpha \sin \beta}.$$

Далее в числителе и знаменателе приведите подобные члены и упростите.

26.
$$A = \frac{\sin{(\alpha - 3 - \alpha)}}{\cos{3}\cos{\frac{\pi}{6}} + \sin{3}\sin{\frac{\pi}{6}} - 0.5\sin{3}}$$

Далее приведите подобные члены и примените формулы сложения.

27.
$$A = \frac{\sqrt{2} \cos \alpha - 2 \cos 45^{\circ} \cos \alpha + 2 \sin 45^{\circ} \sin \alpha}{2 \sin 45^{\circ} \cos \alpha + 2 \cos 45^{\circ} \sin \alpha - \sqrt{2} \sin \alpha}$$
.

Далее упростите.

28.
$$A = 1 + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta} = \frac{\cos \alpha \cos \beta + \sin \alpha \sin \beta}{\cos \alpha \cos \beta}$$
.

Далее примените формулу косинуса разности.

29.
$$A = \operatorname{ctg} \alpha + \operatorname{tg} \alpha = \frac{\cos \alpha}{\sin \alpha} + \frac{\sin \alpha}{\cos \alpha}$$
.

Далее сложите дроби и упростите.

30.
$$A = \sin (180^\circ + 20^\circ) \sin (360^\circ - 50^\circ) + \cos (360^\circ - 20^\circ) \cos 50^\circ = -\sin 20^\circ$$
 (— $\sin 50^\circ$) $+\cos 20^\circ \cos 50^\circ$. Далее примените теорему сложения.

31.
$$A = \frac{\sin 4\alpha \sin 2\alpha + \cos 4\alpha \cos 2\alpha}{\sin 2\alpha}.$$

В числителе примените формулу косинуса разности.

- 32. $A = \cos x \cos y + \sin y \sin x \sin x \sin^3 y \cos x \cos^3 y = \cos x \cos y (1 \cos^2 y) + \sin y \sin x (1 \sin^2 y) = \cos x \times \cos y \sin^2 y + \sin y \sin x \cos^2 y$.

 Далее вынесите общие множители за скобки и примените формулы сложения.
- 33. a) $A = \sin \alpha (\sin \beta \cos \gamma + \cos \beta \sin \gamma) \sin \beta (\sin \gamma \cos \alpha + \cos \gamma \sin \alpha) + \sin \gamma (\sin \alpha \cos \beta + \cos \alpha \sin \beta) =$ $= \sin \alpha \sin \beta \cos \gamma + \sin \alpha \cos \beta \sin \gamma \sin \beta \sin \gamma \cos \alpha \sin \beta \cos \gamma \sin \alpha + \sin \gamma \sin \alpha \cos \beta + \sin \gamma \cos \alpha \sin \beta.$

Далее приведите подобные члены.

6) $A = \cos \alpha \cos \beta \cos \gamma - \cos \alpha \sin \beta \sin \gamma - \cos \beta \cos \gamma \cos \alpha +$ $+\cos\beta\sin\gamma\sin\alpha+\cos\gamma\cos\alpha\cos\beta+\cos\gamma\sin\alpha\sin\beta=$ = $\sin \gamma (\sin \alpha \cos \beta - \cos \alpha \sin \beta) + \cos \gamma (\cos \alpha \cos \beta + \cos \beta)$ $+\sin\alpha\sin\beta$).

Далее примените формулы сложения.

34.
$$A = \frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{1 - \operatorname{tg} \alpha \operatorname{tg} \beta} - (\operatorname{tg} \alpha + \operatorname{tg} \beta) = (\operatorname{tg} \alpha + \operatorname{tg} \beta) \cdot \frac{1 - 1 + \operatorname{tg} \alpha \operatorname{tg} \beta}{1 - \operatorname{tg} \alpha \operatorname{tg} \beta}.$$

Далее примените формулу тангенса суммы.

Далее примените формулу тангенса суммы.

35.
$$A = \frac{\frac{\cos{(\alpha + \beta)}}{\sin{(\alpha + \beta)}} - \frac{\cos{\beta}}{\sin{\beta}}}{\frac{\cos{(\alpha - \beta)}}{\sin{(\alpha - \beta)}} + \frac{\cos{\beta}}{\sin{\beta}}} = \frac{\frac{\cos{(\alpha + \beta)}\sin{\beta} - \sin{(\alpha + \beta)}\cos{\beta}}{\sin{(\alpha + \beta)}\sin{\beta}}}{\frac{\cos{(\alpha - \beta)}\sin{\beta} + \sin{(\alpha - \beta)}\cos{\beta}}{\sin{(\alpha - \beta)}\sin{\beta}}}.$$

Далее примените формулы сложения.

36.
$$A = \frac{\frac{\lg \alpha + \lg \beta}{\lg \alpha + \lg \beta}}{\frac{1 - \lg \alpha \lg \beta}{1 - \lg \alpha \lg \beta}} + \frac{\frac{\lg \alpha - \lg \beta}{\lg \alpha - \lg \beta}}{\frac{1 + \lg \alpha \lg \beta}{1 + \lg \alpha \lg \beta}}.$$

После сокращения дробей приведите подобные члены.

37.
$$A = tg 3\alpha - (tg 2\alpha + tg \alpha) = tg 3\alpha - \frac{tg 2\alpha + tg \alpha}{1 - tg 2\alpha tg \alpha} \times (1 - tg 2\alpha tg \alpha) = tg 3\alpha - tg 3\alpha (1 - tg 2\alpha tg \alpha).$$
Вынесите общий множитель за скобки.

38.
$$A = \operatorname{tg} \alpha \operatorname{tg} \beta + \operatorname{tg} \gamma (\operatorname{tg} \alpha + \operatorname{tg} \beta) = \operatorname{tg} \alpha \operatorname{tg} \beta + \operatorname{tg} \left(\frac{\pi}{2} - (\alpha + \beta)\right) (\operatorname{tg} \alpha + \operatorname{tg} \beta) = \operatorname{tg} \alpha \operatorname{tg} \beta + \operatorname{ctg} (\alpha + \beta) (\operatorname{tg} \alpha + \operatorname{tg} \beta) = \operatorname{tg} \alpha \operatorname{tg} \beta + \frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{\operatorname{tg} (\alpha + \beta)}.$$

Далее примените формулу тангенса суммы.

39.
$$A = \operatorname{tg} n\alpha + \frac{(\operatorname{tg} n\beta + \operatorname{tg} n\gamma) (1 - \operatorname{tg} n\beta \operatorname{tg} n\gamma)}{1 - \operatorname{tg} n\beta \operatorname{tg} n\gamma} =$$

$$= \operatorname{tg} n\alpha + \operatorname{tg} n (\pi - \alpha) (1 - \operatorname{tg} n\beta \operatorname{tg} n\gamma).$$
Далее учтите, что по свойству периодичности
$$\operatorname{tg} n (\pi - \alpha) = \operatorname{tg} (\pi n - n\alpha) = \operatorname{tg} (-n\alpha) = -\operatorname{tg} n\alpha.$$

1. Вычислите
$$\frac{\operatorname{tg^2}\left(-\frac{\pi}{4}\right) \cdot \cos\left(-\frac{\pi}{6}\right) - \sin\left(-\frac{\pi}{6}\right)}{\operatorname{ctg^3}\left(-\frac{\pi}{4}\right) - \operatorname{ctg}\left(-\frac{\pi}{6}\right)}.$$

- **2.** Вычислите sin 2565°.
- 3. Упростите $\sin (2\pi \alpha) + \cos (4\pi \alpha) + \cos ($
- 4. Вычислите без таблиц соз 15°.
- **5.** Вычислите $\cos{(\alpha \beta)}$, если $\tan{\alpha} = -0.75$; $\cos{\beta} = \frac{7}{25}$; $\alpha \in]90^{\circ}$; 180° [и $\beta \in]270^{\circ}$; 360° [.
- 6. Найдите $\cos \alpha$, если $\sin \beta = -\frac{1}{4}$; $\sin (\alpha + \beta) = -\frac{3}{5}$; $\alpha \in]270^\circ; 360^\circ[$ и $\beta \in]180^\circ; 270^\circ[$.
- 7. Упростите $\sin 6\alpha \ \text{tg } 3\alpha + \cos 6\alpha$.
- 8. Вычислите без таблиц $\frac{\sin \frac{\pi}{15} \sin \frac{\pi}{12} \cos \frac{\pi}{15} \cos \frac{\pi}{12}}{2 \sin \frac{7}{20} \pi}.$
- 9. Докажите тождество: $\frac{\sin{(\alpha+\beta)}-2\sin{\alpha}\cos{\beta}}{2\sin{\alpha}\sin{\beta}+\cos{(\alpha+\beta)}}= \operatorname{tg}{(\beta-\alpha)}.$
- 10. Покажите, что величина выражения $\cos (\alpha x) (\sin \alpha \cos x + \cos \alpha \sin x) \cos (\alpha + x) (\sin \alpha \cos x \cos \alpha \sin x)$ не зависит от α .
- 11. Докажите, что если A, B и C углы треугольныха, то \widehat{C} = $=\sin(\widehat{A}+\widehat{B})$, $\cos\widehat{C}=-\cos(\widehat{A}+\widehat{B})$.
- 12. Вычислите $\lg \alpha$, если $\lg (\alpha \beta) = 2$; $\sin \beta = \frac{3}{5}$; $\frac{\pi}{2} < \beta < \pi$.
- 13. Докажите тождество $tg(\alpha + \beta) tg\alpha tg\beta = tg(\alpha + \beta) \times tg\alpha tg\beta$.

Ответы

1.
$$(2+3^{0,5})\cdot 2^{-1}$$
. 2. $2^{-0,5}$. 3. 0. 4. $\frac{6^{0,5}+2^{0,5}}{4}$. 5. -0,8.

6.
$$\frac{3+4\sqrt{15}}{20}$$
. 7. 1. 8. -2^{-1} . 12. 2^{-1} .

ЗАДАНИЕ 4

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ДВОЙНОГО АРГУМЕНТА

а) Синус двойного аргумента

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha. \tag{4.1}$$

б) Косинус двойного аргумента

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha, \qquad (4.2)$$

$$\cos 2\alpha = 2\cos^2 \alpha - 1, \qquad (4.3)$$

$$\cos 2\alpha = 2 \cos^2 \alpha - 1,$$
 (4.3)
 $\cos 2\alpha = 1 - 2 \sin^2 \alpha.$ (4.4)

в) Тангенс двойного аргумента

$$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha}, \qquad (4.5)$$

$$tg 2\alpha = \frac{2\operatorname{ctg}\alpha}{\operatorname{ctg}^2\alpha - 1}.$$
 (4.6)

§ 2. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ПОЛОВИННОГО АРГУМЕНТА

$$1 + \cos \alpha = 2\cos^2\frac{\alpha}{2}, \tag{4.7}$$

$$1 - \cos \alpha = 2 \sin^2 \frac{\alpha}{2}. \tag{4.8}$$

Формулы (4.7) и (4.8) будем называть формулами понижения степени.

$$tg\frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}},$$
 (4.9)

$$tg\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha},\tag{4.10}$$

$$tg\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha}.$$
 (4.11)

§ 3. BUPANCHUE TPMTOHOMETPM4ECKUX CONKLUIN ЧЕРЕЗ ТАНГЕНС ПОЛОВИННОГО АРГУМЕНТА

$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}},\tag{4.12}$$

$$\cos \alpha = \frac{1 - tg^2 \frac{\alpha}{2}}{1 + tg^2 \frac{\alpha}{2}}, \qquad (4.13)$$

$$tg \alpha = \frac{2 tg \frac{\alpha}{2}}{1 - tg^2 \frac{\alpha}{2}}, \qquad (4.14)$$

$$\operatorname{ctg} \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{2 \operatorname{tg} \frac{\alpha}{2}}.$$
 (4.15)

УПРАЖНЕНИЯ

- 1. Вычислите $\sin 2\alpha$, $\cos 2\alpha$ и $\lg 2\alpha$, если $\sin \alpha = 0.8$ и $0^{\circ} < \alpha < 90^{\circ}$.
- 2. Дано $\sin \frac{\alpha}{2} = 0.6$ и $90^{\circ} < \frac{\alpha}{2} < 180^{\circ}$. Найдите $\sin \alpha$ и $\cos \alpha$.
- **3.** Дано tg x = 3. Вычислите sin 4x, если $0 < x < \frac{\pi}{2}$.
- 4. Найдите $\lg \frac{\alpha}{2}$, если $\sin \alpha = \frac{m^2 n^2}{m^2 + n^2}$.
- 5. Вычислите $\cos 2x$, если $\sin \frac{x}{2} = \frac{1}{3}$.

Упростите выражения:

6. $2 \sin^2 (45^\circ + 1.5x) - 1$.

7.
$$\frac{\cos\frac{\alpha}{2}}{\sin\frac{\alpha}{4}-\cos\frac{\alpha}{4}}$$
 8. $1-8\sin^2\beta\cos^2\beta$. 9.
$$\frac{(\cos 0.75\alpha-\sin 0.75\alpha)^2}{1-\sin 1.5\alpha}$$

10.
$$\left(\operatorname{ctg}\frac{\alpha}{3} - \operatorname{tg}\frac{\alpha}{3}\right)\operatorname{tg}\frac{2}{3}\alpha$$
. 11. $\frac{\operatorname{ctg}(45^{\circ} - \alpha)}{\operatorname{ctg}^{2}(15^{\circ} - \alpha) - 1}$.

12.
$$\frac{\sin\left(45^{\circ} + \frac{\alpha}{2}\right)}{\sqrt{1 - \sin\alpha}} - \frac{\sin\left(45^{\circ} - \frac{\alpha}{2}\right)}{\sqrt{1 + \sin\alpha}} \text{ при } 0^{\circ} < \alpha < 90^{\circ}.$$

13.
$$\sqrt{0.5-0.5}\sqrt{0.5+0.5\cos\alpha}$$
 при $0^{\circ} \leqslant \alpha \leqslant 2\pi$.

14.
$$\frac{1-4\sin^2\alpha\cos^2\alpha}{\cos^2\alpha-\sin^2\alpha}$$
. 15. $\frac{1}{1-t_b^2\alpha}-\frac{1}{1-\cot^2\alpha}$.

Докажите тождества:

16.
$$\frac{\sin \alpha + \sin \frac{\alpha}{2}}{1 + \cos \alpha + \cos \frac{\alpha}{2}} = tg \frac{\alpha}{2}$$
. 17. $\frac{4 \sin^4 \frac{\alpha}{4}}{1 - \cos^2 \frac{\alpha}{2}} = tg^2 \frac{\alpha}{4}$.

18.
$$\frac{1+\cos\frac{\alpha}{2}-\sin\frac{\alpha}{2}}{1-\cos\frac{\alpha}{2}-\sin\frac{\alpha}{2}}=-\operatorname{ctg}\frac{\alpha}{4}.$$

19.
$$\frac{\sin{(80^\circ + \alpha)}}{4\sin{\left(20^\circ + \frac{\alpha}{4}\right)}\sin{\left(70^\circ - \frac{\alpha}{4}\right)}} = \cos{\left(40^\circ + \frac{\alpha}{2}\right)}.$$

20.
$$\frac{4 \operatorname{tg} \alpha (1 - \operatorname{tg}^2 \alpha)}{(1 + \operatorname{tg}^2 \alpha)^2} = \sin 4\alpha$$
.

21.
$$\cos 3\alpha \cos 6\alpha \cos 12\alpha = \frac{\sin 24\alpha}{8 \sin 3\alpha}$$
.

22.
$$\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$$
. 23. $\frac{\operatorname{tg}^{2}\left(\frac{\pi}{4} + \alpha\right) - 1}{1 + \operatorname{tg}^{2}\left(\frac{\pi}{4} + \alpha\right)} = \sin 2\alpha$.

24.
$$\cos^6 \alpha - \sin^6 \alpha = \frac{(3 + \cos^2 2\alpha)\cos 2\alpha}{4}$$
.

25.
$$tg\left(\alpha + \frac{\pi}{4}\right) + tg\left(\alpha - \frac{\pi}{4}\right) = 2 tg 2\alpha$$
.

26.
$$4\cos^2\left(45^\circ - \frac{\alpha}{2}\right) + \sqrt{4\sin^4\alpha + \sin^22\alpha} = 2$$
 при $180^\circ < \alpha < 270^\circ$.

Ответы

1.
$$\sin 2\alpha = 0.96$$
; $\cos 2\alpha = -0.28$; $\log 2\alpha = -\frac{24}{7}$.

2. —0,96; 0,28. 3. —
$$\frac{24}{25}$$
. 4. $\frac{m-n}{m+n}$ при $mn > 0$ или $\frac{m+n}{m-n}$ при $mn < 0$. 5. $\frac{17}{81}$. 6. $\sin 3x$. 7. — $\left(\cos \frac{\alpha}{4} + \sin \frac{\alpha}{4}\right)$. 8. $\cos 4\beta$.

9. 1. 10. 2. 11.
$$\frac{1}{2}$$
 ctg 2α . 12. $\sqrt{2}$ tg α . 13. $\sin \frac{\alpha}{4}$, если $0 \leqslant \alpha \leqslant \pi$; $\cos \frac{\alpha}{4}$, если $\pi < \alpha \leqslant 2\pi$. 14. $\cos 2\alpha$. 15. $\frac{1}{\cos 2\alpha}$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- **1.** Найдите cos α, применяя формулы для синуса и косинуса двойного аргумента.
- **2.** Выразите $\cos \frac{\alpha}{2}$ через $\sin \frac{\alpha}{2}$, вычислите его числовое значение. Далее примените формулы двойного аргумента, учитывая, что $\alpha = 2 \cdot \frac{\alpha}{2}$.
- 8. Воспользовавшись тождеством $\sin 4x = 2 \sin 2x \cos 2x$, выразите $\sin 2x$ и $\cos 2x$ через tg x.
- 4. Примените формулу tg $\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha}$.
- **Выразите cos** 2x через sin x. Вычислите sin x по формуле двойного аргумента, учитывая, что $x = 2 \cdot \frac{x}{2}$.
- Вынесите —1 за скобки. Примените формулу косинуса двойного аргумента.
- **V.** Представьте $\frac{\alpha}{2}$ в виде $2 \cdot \frac{\alpha}{4}$ и примените формулу двойного аргумента для косинуса.
- Представьте данное выражение в виде 1—2 (4 sin² β cos² β), затем примените формулу двойного аргумента для синуса.
- Развернув квадрат двучлена в числителе, примените формулу двойного аргумента для синуса.
- **19.** Выразите котангенс через тангенс, выполните вычитание в скобках и примените формулу двойного аргумента для тангенса.
- 11. Представьте данное выражение в виде: $1: \frac{\operatorname{ctg}^2(45^\circ \alpha) 1}{\operatorname{ctg}(45^\circ \alpha)}$. Выражение, стоящее в знаменателе, умножьте и разделите на 2. Примените формулу для котангенса двойного аргумента.
- Замените $\sin \alpha$ на $\cos \left(\frac{\pi}{2} \alpha \right)$. Подкоренные выражения преобразуйте в произведения.
- Вынесите общий множитель во внутреннем радикале, затем сумму 1 + cos α преобразуйте в произведение.
- **14.** Примените формулы двойного аргумента для синуса и косинуса.
- 15. Тангенс и котангенс выразите через синус и косинус.
- **16.** Выразите $\sin \alpha$ через функции угла $\frac{\alpha}{2}$. В знаменателе преобразуйте $1 + \cos \alpha$ в произведение.
- 17. В знаменателе после упрощений примените формулу двойного аргумента для синуса.
- 18. Преобразуйте сумму и разность единицы и косинуса в произведение и примените формулу двойного аргумента.

19. Замените $\sin\left(70^{\circ} - \frac{\alpha}{4}\right)$ на $\cos\left(90^{\circ} - \left(70^{\circ} - \frac{\alpha}{4}\right)\right)$. Затем в числителе и знаменателе примените формулу двойного аргумента для синуса.

20. Используйте формулы, выражающие синус и косинус через тангенс половинного аргумента.

21. Умножив и разделив левую часть на 8 sin 3α, трижды примените формулу двойного аргумента для синуса.

22. См. пример 21.

- 23. Используйте формулу выражения косинуса через тангенс половинного аргумента, предварительно изменив знак перед дробью.
- 24. Разложите двучлен $\cos^6 \alpha \sin^6 \alpha$ на множители, применив формулу разности кубов. Используйте формулы двойного аргумента косинуса и синуса, дополнив сумму четвертых степеней синуса и косинуса до квадрата суммы.

25. Преобразуйте сумму тангенсов в произведение.

26. Примените формулу (4.7). Под радикалом используйте формулу двойного аргумента для синуса.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

- 1. $\cos \alpha = \sqrt{1 \sin^2 \alpha} = \sqrt{1 (0.8)^2}$. Значения $\sin \alpha$ и $\cos \alpha$ подставьте в формулы $\sin 2\alpha = 2 \sin \alpha \cos \alpha$ и $\cos 2\alpha = \cos^2 \alpha$ $-\sin^2 \alpha$, учтите, что $\log 2\alpha = \frac{\sin 2\alpha}{\cos^2 \alpha}$.
- 2. $\cos\frac{\alpha}{2} = -\sqrt{1-\sin^2\frac{\alpha}{2}} = -\sqrt{1-(0,6)^2}$. Значение $\sin\frac{\alpha}{2}$ и $\cos\frac{\alpha}{2}$ подставьте в формулы $\sin\alpha = 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$ и $\cos\alpha = \cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}$.
- 3. Зная, что $\lg x = 3$, подставьте $\sin 2x = \frac{2 \lg x}{1 + \lg^2 x}$ и $\cos 2x = \frac{1 \lg^2 x}{1 + \lg^2 x}$ в тождество $\sin 4x = 2 \sin 2x \cos 2x$.
- 4. Используя тождество $\sin^2 \alpha + \cos^2 \alpha = 1$, найдем $\cos \alpha =$ $= \pm \sqrt{1 \left(\frac{m^2 n^2}{m^2 + n^2}\right)^2} = \pm \sqrt{\frac{m^4 + 2m^2n^2 + n^4 m^4 + 2m^2n^2 n^4}{(m^2 + n^2)^2}} =$ $= \pm \frac{2mn}{m^2 + n^2}.$

Подставив значения $\sin \alpha$ и $\cos \alpha$ в тождество $tg \frac{\alpha}{2} = \frac{1-\cos \alpha}{\sin \alpha}$.

получим:
$$\lg \frac{\alpha}{2} = \frac{1 - \frac{2mn}{m^2 + n^2}}{\frac{m^2 - n^2}{m^2 + n^2}}$$
 при $mn > 0$ или

$$\lg \frac{\alpha}{2} = \frac{1 + \frac{2mn}{m^2 + n^2}}{\frac{m^2 - n^2}{m^2 + n^2}}$$
 при $mn < 0$.

- 5. Учитывая, что $\cos^2 \frac{x}{2} = 1 \sin^2 \frac{x}{2} = 1 \frac{1}{q} = \frac{8}{q}$, вычислите $\sin^2 x$ по формуле $\sin^2 x = 4 \sin^2 \frac{x}{2} \cos^2 \frac{x}{2}$. Далее воспользуйтесь тождеством $\cos 2x = 1 - 2 \sin^2 x$.
- **6.** $2\sin^2\left(45^\circ + \frac{3x}{2}\right) 1 = -\left(1 2\sin^2\left(45^\circ + \frac{3x}{2}\right)\right) = -\cos(90^\circ + 3x).$

Далее используйте формулу приведения для косинуса.

7.
$$\frac{\cos\frac{\alpha}{2}}{\sin\frac{\alpha}{4}-\cos\frac{\alpha}{4}} = \frac{\cos^2\frac{\alpha}{4}-\sin^2\frac{\alpha}{4}}{\sin\frac{\alpha}{4}-\cos\frac{\alpha}{4}}.$$
 Числитель разложите на

множители и сократите. 8. $1 - 8 \sin^2 \beta \cos^2 \beta = 1 - 2 (4 \sin^2 \beta \cos^2 \beta) = 1 - 2 \sin^2 2\beta$. Далее примените формулу двойного аргумента для косинуса.

9.
$$\frac{(\cos 0,75\alpha - \sin 0,75\alpha)^2}{1-\sin 1.5\alpha} = \frac{1-2\sin 0,75\alpha\cos 0,75\alpha}{1-\sin 1.5\alpha}$$

9.
$$\frac{(\cos 0,75\alpha - \sin 0,75\alpha)^{2}}{1 - \sin 1,5\alpha} = \frac{1 - 2\sin 0,75\alpha\cos 0,75\alpha}{1 - \sin 1,5\alpha}$$
10.
$$\left(\cot g \frac{\alpha}{3} - tg \frac{\alpha}{3}\right) tg \frac{2\alpha}{3} = \left(\frac{1}{tg \frac{\alpha}{3}} - tg \frac{\alpha}{3}\right) tg \frac{2\alpha}{3} = \frac{1}{tg \frac{\alpha}{3}}$$

$$=\frac{2\left(1-\lg^2\frac{\alpha}{3}\right)}{2\lg\frac{\alpha}{3}}\cdot\lg\frac{2\alpha}{3}.$$

11.
$$\frac{\operatorname{ctg}(45^{\circ} - \alpha)}{\operatorname{ctg}^{2}(45^{\circ} - \alpha) - 1} = \frac{1}{2 \cdot \frac{\operatorname{ctg}^{2}(45^{\circ} - \alpha) - 1}{2 \operatorname{ctg}(45^{\circ} - \alpha)}} = \frac{1}{2 \operatorname{ctg}(90^{\circ} - 2\alpha)}.$$

Далее используйте формулы приведения и упростите.

12.
$$\frac{\sin\left(45^{\circ} + \frac{\alpha}{2}\right)}{\sqrt{1 - \sin\alpha}} - \frac{\sin\left(45^{\circ} - \frac{\alpha}{2}\right)}{\sqrt{1 + \sin\alpha}} = \frac{\sin\left(45^{\circ} + \frac{\alpha}{2}\right)}{\sqrt{1 - \cos(90^{\circ} - \alpha)}}$$

$$= \frac{\sin\left(45^{\circ} - \frac{\alpha}{2}\right)}{\sqrt{1 + \cos(90^{\circ} - \alpha)}} = \frac{\sin\left(45^{\circ} + \frac{\alpha}{2}\right)}{\sqrt{2\sin^{2}\left(45^{\circ} - \frac{\alpha}{2}\right)}} - \frac{\sin\left(45^{\circ} - \frac{\alpha}{2}\right)}{\sqrt{2\cos^{2}\left(45^{\circ} - \frac{\alpha}{2}\right)}}$$

$$= \frac{1}{\sqrt{2}} \left(\frac{\cos\left(45^{\circ} - \frac{\alpha}{2}\right)}{\sin\left(45^{\circ} - \frac{\alpha}{2}\right)} - \frac{\sin\left(45^{\circ} - \frac{\alpha}{2}\right)}{\cos\left(45^{\circ} - \frac{\alpha}{2}\right)}\right).$$

Далее произведите вычитание дробей, затем примените формулы двойного аргумента.

13.
$$\sqrt{0.5 - 0.5 \sqrt{0.5 + 0.5 \cos \alpha}} = \sqrt{0.5 - 0.5 \sqrt{0.5 (1 + \cos \alpha)}} = \sqrt{0.5 - 0.5 \sqrt{\cos^2 \frac{\alpha}{2}}} = \sqrt{0.5 \left(1 - \left|\cos \frac{\alpha}{2}\right|\right)}.$$

Так как по условию $0 \leqslant \alpha \leqslant 2\pi$, то $0 \leqslant \frac{\alpha}{2} \leqslant \pi$. Разобьем полученный промежуток на два новых промежутка

1)
$$0 \leqslant \frac{\alpha}{2} \leqslant \frac{\pi}{2}$$
; 2) $\frac{\pi}{2} < \frac{\alpha}{2} \leqslant \pi$.

Рассмотрим эти случаи:

1)
$$\sqrt{0.5(1-\left|\cos\frac{\alpha}{2}\right|)} = \sqrt{0.5(1-\cos\frac{\alpha}{2})} =$$

$$= \sqrt{0.5 \cdot 2\sin^2\frac{\alpha}{4}} = \sin\frac{\alpha}{4}, \text{ так как } 0 \leqslant \frac{\alpha}{4} \leqslant \frac{\pi}{4}.$$
2) $\sqrt{0.5(1-\left|\cos\frac{\alpha}{2}\right|)} = \sqrt{0.5(1-\left(-\cos\frac{\alpha}{2}\right))} =$

$$= \sqrt{0.5(1+\cos\frac{\alpha}{2})} = \sqrt{0.5 \cdot 2\cos^2\frac{\alpha}{4}} = \cos\frac{\alpha}{4}, \text{ так как } \frac{\pi}{4} < \frac{\alpha}{4} \leqslant \frac{\pi}{2}.$$

14.
$$\frac{1-4\sin^2\alpha\cos^2\alpha}{\cos^2\alpha-\sin^2\alpha}=\frac{1-\sin^22\alpha}{\cos2\alpha}$$
. Далее упростите.

15.
$$\frac{1}{1-\lg^2\alpha} - \frac{1}{1-\operatorname{clg}^2\alpha} = \frac{1}{1-\frac{\sin^2\alpha}{\cos^2\alpha}} - \frac{1}{1-\frac{\cos^2\alpha}{\sin^2\alpha}} = \frac{1}{\frac{\cos^2\alpha-\sin^3\alpha}{\cos^2\alpha}} - \frac{1}{\frac{\sin^2\alpha-\cos^2\alpha}{\sin^2\alpha}} = \frac{\cos^2\alpha}{\cos^2\alpha} + \frac{\sin^2\alpha}{\cos^2\alpha}.$$

16.
$$\frac{\sin \alpha + \sin \frac{\alpha}{2}}{1 + \cos \alpha + \cos \frac{\alpha}{2}} = \frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} + \sin \frac{\alpha}{2}}{2 \cos^2 \frac{\alpha}{2} + \cos \frac{\alpha}{2}} = \frac{\sin \frac{\alpha}{2} \left(2 \cos \frac{\alpha}{2} + 1\right)}{\cos \frac{\alpha}{2} \left(2 \cos \frac{\alpha}{2} + 1\right)}.$$

17.
$$\frac{4 \sin^4 \frac{\alpha}{4}}{1 - \cos^2 \frac{\alpha}{2}} = \frac{4 \sin^4 \frac{\alpha}{4}}{4 \sin^2 \frac{\alpha}{4} \cos^2 \frac{\alpha}{4}}.$$

18.
$$\frac{1 + \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}}{1 - \cos\frac{\alpha}{2} - \sin\frac{\alpha}{2}} = \frac{2\cos^2\frac{\alpha}{4} - 2\sin\frac{\alpha}{4}\cos\frac{\alpha}{4}}{2\sin^2\frac{\alpha}{4} - 2\sin\frac{\alpha}{4}\cos\frac{\alpha}{4}} =$$

$$= \frac{2\cos\frac{\alpha}{4}\left(\cos\frac{\alpha}{4} - \sin\frac{\alpha}{4}\right)}{2\sin\frac{\alpha}{4}\left(\sin\frac{\alpha}{4} - \cos\frac{\alpha}{4}\right)}.$$

Далее упростите.

19.
$$\frac{\sin (80^{\circ} + \alpha)}{4 \sin \left(20^{\circ} + \frac{\alpha}{4}\right) \sin \left(70^{\circ} - \frac{\alpha}{4}\right)} = \frac{\sin 2\left(40^{\circ} + \frac{\alpha}{2}\right)}{4 \sin \left(20^{\circ} + \frac{\alpha}{4}\right) \cos \left(20^{\circ} + \frac{\alpha}{4}\right)}.$$

20.
$$\frac{4 \operatorname{tg} \alpha (1 - \operatorname{tg}^2 \alpha)}{(1 + \operatorname{tg}^2 \alpha)^2} = \frac{2 \cdot 2 \operatorname{tg} \alpha}{1 + \operatorname{tg}^2 \alpha} \cdot \frac{1 - \operatorname{tg}^2 \alpha}{1 + \operatorname{tg}^2 \alpha} = 2 \sin 2\alpha \cos 2\alpha.$$

Примените формулу двойного аргумента для синуса.

21. Умножив и разделив левую часть тождества на 8 sin 3α, получим:

$$\frac{8 \sin 3\alpha \cos 3\alpha \cos 6\alpha \cos 12\alpha}{8 \sin 3\alpha} = \frac{4 \sin 6\alpha \cos 6\alpha \cos 12\alpha}{8 \sin 3\alpha} = \frac{2 \sin 12\alpha \cos 12\alpha}{8 \sin 3\alpha}.$$

22. См. пример 21.

23.
$$\frac{tg^{2}\left(\frac{\pi}{4}+\alpha\right)-1}{1+tg^{2}\left(\frac{\pi}{4}+\alpha\right)} = -\frac{1-tg^{2}\left(\frac{\pi}{4}+\alpha\right)}{1+tg^{2}\left(\frac{\pi}{4}+\alpha\right)} = -\cos\left(\frac{\pi}{2}+2\alpha\right).$$

Далее воспользуйтесь формулой приведения для косинуса. 24. $\cos^6 \alpha - \sin^6 \alpha = (\cos^2 \alpha)^3 - (\sin^2 \alpha)^3 = (\cos^2 \alpha - \sin^2 \alpha)(\cos^4 \alpha + \sin^2 \alpha \cos^2 \alpha + \sin^4 \alpha) = \cos 2\alpha (\cos^4 \alpha + 2 \sin^2 \alpha \cos^2 \alpha + \sin^4 \alpha - \sin^2 \alpha \cos^2 \alpha) = \cos 2\alpha ((\cos^2 \alpha + \sin^2 \alpha)^2 - \sin^2 \alpha \cos^2 \alpha).$

Далее $\sin^2 2\alpha$ выразите через $\cos^2 2\alpha$ и произведите необходимые упрощения.

25.
$$tg\left(\alpha + \frac{\pi}{4}\right) + tg\left(\alpha - \frac{\pi}{4}\right) = \frac{\sin\left(\alpha + \frac{\pi}{4} + \alpha - \frac{\pi}{4}\right)}{\cos\left(\alpha + \frac{\pi}{4}\right)\cos\left(\alpha - \frac{\pi}{4}\right)} = \frac{2\sin 2\alpha}{2\sin\left(\frac{\pi}{4} - \alpha\right)\cos\left(\frac{\pi}{4} - \alpha\right)}.$$

Далее воспользуйтесь формулой двойного аргумента для синуса.

26.
$$4\cos^{2}\left(45^{\circ} - \frac{\alpha}{2}\right) + \sqrt{4\sin^{4}\alpha + \sin^{2}2\alpha} = 2 \cdot 2\cos^{2}\left(45^{\circ} - \frac{\alpha}{2}\right) + \sqrt{4\sin^{4}\alpha + 4\sin^{2}\alpha\cos^{2}\alpha} = 2(1 + \cos(90^{\circ} - \alpha)) + \sqrt{4\sin^{2}\alpha(\sin^{2}\alpha + \cos^{2}\alpha)} = 2(1 + \sin\alpha) + \sqrt{4\sin^{2}\alpha(\cos^{2}\alpha + \cos\alpha)} = 2(1 + \sin\alpha) + \sqrt{4\sin^{2}\alpha(\cos\alpha)} = 2(1 + \sin\alpha) + \sqrt{4\sin^{2}\alpha(\cos\alpha)} = 2(1 + \sin\alpha) + \sqrt{4\sin\alpha} = 2(1 + \cos\alpha) + \sqrt{4\cos\alpha} = 2(1 + \cos\alpha) +$$

 $+\sqrt{4\sin^2\alpha}=2+2\sin\alpha+2\sin\alpha$.

Учтите, что при $180^{\circ} < \alpha < 270^{\circ}$, sin $\alpha < 0$ и используйте определение абсолютной величины числа.

 $|\sin \alpha| = -\sin \alpha$, так как $180^{\circ} < \alpha < 270^{\circ}$.

КОНТРОЛЬНОЕ ЗАДАНИЕ

Вычислите:

- 1. $\sin 4\alpha$, если $\cot 2\alpha = -2$.
- 2. tg 12 α , если $\sin 6\alpha = \frac{1}{\sqrt{290}}$, причем $495^{\circ} < 6\alpha < 540^{\circ}$.
- 3. $\cos \frac{\alpha}{2}$, если $\operatorname{ctg} \alpha = -\frac{7}{24}$ и $450^{\circ} < \alpha < 540^{\circ}$.
- 4. $\sin 2\alpha$, если $tg \alpha = 1$.
- 5. Упростите выражение: $\frac{1+\sin\alpha-2\sin^2\left(45^\circ-\frac{\alpha}{2}\right)}{4\cos\frac{\alpha}{2}}.$
- 6. Докажите неравенство:

$$\operatorname{ctg} \frac{\alpha}{2} \geqslant 1 + \operatorname{ctg} \alpha$$
, если $0 < \alpha < \pi$.

7. Существует ли такой угол α, что

$$\cos^2\frac{\alpha}{2} - \cos^2 5^\circ = \sin^2\left(45^\circ + \frac{\alpha}{2}\right) - \frac{1}{2}\sin\alpha$$
?

- 8. Сумму преобразуйте в произведение $2 + \lg 2\alpha + \operatorname{ctg} 2\alpha$.
- 9. Упростите:

$$A = \frac{.2}{\sqrt{2+\sqrt{2+2\cos4\alpha}}}$$
, если $0 \leqslant \alpha \leqslant \frac{\pi}{2}$.

Вычислите без таблиц.

10.
$$A = \text{ctg } 7.5^{\circ} + \text{tg } 67.5^{\circ} - \text{tg } 7.5^{\circ} - \text{ctg } 67.5^{\circ}$$
.

11.
$$A = \sin^4 \frac{\pi}{16} + \sin^4 \frac{3\pi}{16} + \sin^4 \frac{5\pi}{16} + \sin^4 \frac{7\pi}{16}$$
.

Ответы

1.
$$-\frac{4}{5}$$
. 2. $-\frac{17}{144}$. 3. $-\frac{3}{5}$. 4. 1. 5. $\sin \frac{\alpha}{2}$.

7. Нет такого угла, который удовлетворял бы приведенному в условии равенству.

8.
$$\frac{4\cos^2\left(\frac{\pi}{4}-2\alpha\right)}{\sin 4\alpha}.$$
 9.
$$A=\begin{cases} (\cos \alpha)^{-1}, \text{ если } 0\leqslant \alpha\leqslant \frac{\pi}{4};\\ (\sin \alpha)^{-1}, \text{ если } \frac{\pi}{4}<\alpha\leqslant \frac{\pi}{2}.\end{cases}$$

10.
$$\frac{\sqrt{6} \sqrt{2+\sqrt{3}}}{2}$$
. 11. 1,5.

ЗАДАНИЕ 5

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. ПРЕОБРАЗОВАНИЕ ПРОИЗВЕДЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ В СУММУ

а) Произведение синуса на косинус

$$\sin \alpha \cos \beta = \frac{\sin (\alpha + \beta) + \sin (\alpha - \beta)}{2}.$$
 (5.1)

б) Произведение двух косинусов

$$\cos \alpha \cos \beta = \frac{\cos (\alpha + \beta) + \cos (\alpha - \beta)}{2}.$$
 (5.2)

в) Произведение двух синусов

$$\sin \alpha \sin \beta = \frac{\cos (\alpha - \beta) - \cos (\alpha + \beta)}{2}.$$
 (5.3)

УПРАЖНЕНИЯ

Вычислите, не пользуясь таблицами:

1.
$$A = \sin 37^{\circ}30' \sin 7^{\circ}30'$$
. 2. $A = \cos 75^{\circ} \cos 15^{\circ}$.

3. $A = \sin 52^{\circ}30' \cos 7^{\circ}30'$.

Преобразуйте в сумму следующие выражения:

4.
$$A = \cos\left(\alpha - \frac{\pi}{6}\right)\cos\left(\frac{\alpha}{2} + \frac{\pi}{6}\right)$$
.

5. $A = \sin 10^{\circ} \cos 8^{\circ} \cos 6^{\circ}$.

6. $A = \cos 3x \cos 5x \cos 7x$.

7. $A = \sin x \cos 3x \cos 4x$.

8. $A = \sin x \sin 2x \sin 3x \sin 4x$.

9. $A = 8 \sin^3 x \cos x$. 10. $A = 4 \sin x \cos^2 x$.

11. $A = 16 \sin^2 x \cos^3 x$. 12. $A = 32 \sin^5 \alpha \cos^3 \alpha$.

Упростите:

13.
$$A = \sin 4^{\circ} \sin 86^{\circ} - \cos 2^{\circ} \sin 6^{\circ} + \frac{1}{2} \sin 4^{\circ}$$
.

14. $A = 2 \cos 20^{\circ} \cos 40^{\circ} - \cos 20^{\circ}$.

15.
$$A = \sin 2x + 2 \sin \left(\frac{5\pi}{12} - x\right) \cos \left(\frac{5\pi}{12} + x\right)$$
.

16. $A = \cos 2x \cos^2 x - \frac{1}{4} \cos 4x - \frac{1}{2} \cos 2x$.

17. $A = \cos^2 5 + \cos^2 1 - \cos 6 \cos 4$.

18. Докажите: $\cos 20^{\circ} \sin 50^{\circ} \cos 80^{\circ} = \frac{1}{8}$.

Вычислите без таблиц:

19. $A = \cos 5^{\circ} \cos 55^{\circ} \cos 65^{\circ}$.

20. $A = \text{tg } 20^{\circ} \text{ tg } 40^{\circ} \text{ tg } 60^{\circ} \text{ tg } 80^{\circ}$.

21. Представьте sin⁵ α в виде многочлена первой степены от тригонометрических функций углов, кратных α.

Докажите тождества:

22. $4\cos\frac{x}{2}\cos x\cos\frac{3}{2}x = 1 + \cos x + \cos 2x + \cos 3x$.

23. $\sin 3x = 4 \sin x \sin (60^{\circ} - x) \sin (60^{\circ} + x)$.

24. $tg 3x = tg x tg (60^{\circ} - x) tg (60^{\circ} + x)$.

25. $\sin^2 \alpha + \cos (60^\circ + \alpha) \cos (60^\circ - \alpha) = \frac{1}{4}$.

26. $16 \sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = 3$.

27. $4\cos\left(\frac{\pi}{6}-\alpha\right)\sin\left(\frac{\pi}{3}-\alpha\right)=\frac{\sin 3\alpha}{\sin \alpha}$.

28. $\sin{(\pi + \alpha)} \sin{(\frac{4}{3}\pi + \alpha)} \sin{(\frac{2}{3}\pi + \alpha)} = \frac{1}{4}\sin{3\alpha}$.

Ответы

1. $(\sqrt{3} - \sqrt{2}) : 4. 2. 0,25. 3. (\sqrt{3} + \sqrt{2}) : 4.$

4. $\left(\cos\frac{3\alpha}{2} + \cos\left(\frac{\alpha}{2} - \frac{\pi}{3}\right)\right) \cdot 0.5$

5. $(\sin 24^{\circ} + \sin 12^{\circ} + \sin 8^{\circ} - \sin 4^{\circ}) : 4$.

6. $(\cos 15x + \cos 5x + \cos 9x + \cos x) : 4$.

7. $(\sin 8x - \sin 6x + \sin 2x) : 4$.

8. $(1 + \cos 10x - \cos 8x - \cos 6x) : 8$.

9. $2 \sin 2x - \sin 4x$. 10. $\sin 3x + \sin x$.

11. $2\cos\alpha-\cos5\alpha-\cos3\alpha$.

12. $1,5 \sin 2\alpha - \frac{1}{2} \sin 4\alpha - \frac{1}{2} \sin 6\alpha + \frac{1}{4} \sin 8\alpha$

13. 0. 14. 0,5. 15. 0,5. 16. 0,25. 17. 1. 19. $\frac{\sqrt{6}+\sqrt{2}}{16}$.

20. 3. 21. $(\sin 5\alpha - 5 \sin 3\alpha + 10 \sin \alpha) : 16$.

КОНСУЛЬТАЦИИ ПЕРВОТО УРОВНЯ

1. Примените формулу (5.3).

2. Примените формулу (5.2).

3. Примените формулу (5.1).

- 4. Используйте формулу (5.2).
- 5. Произведение первых двух сомножителей преобразуйте в сумму.
- 6. См. пример 5.
- 7. См. пример 5.
- 8. Каждую пару сомножителей преобразуйте в сумму тригонометрических функций.
- 9. Представьте данное выражение в виде $2 \sin x \cos x \cdot 4 \sin^2 x$, примените формулы удвоения и понижения степени.
- 10. Примените формулу для синуса двойного аргумента и преобразуйте произведение в сумму.
- 11. Выделите в данном выражении квадрат синуса двойного аргумента, затем примените формулу понижения степени для синуса.
- 12. Представьте данное выражение в виде $4 \sin^2 \alpha$ ($2 \sin \alpha \cos \alpha$)³, используйте формулу понижения степени и формулу удвоения аргумента.
- 13. $\sin 86^{\circ}$ замените на $\cos 4^{\circ}$ (по формуле $\sin \alpha = \cos (90^{\circ} \alpha)$). Используйте формулу синуса двойного аргумента. Произведение синуса на косинус преобразуйте в сумму.
- 14. Преобразуйте произведение косинусов в сумму.
- 15. Преобразуйте произведение синуса на косинус в сумму.
- 16. Понизьте степень косинуса и выполните умножение.
- 17. Примените формулы понижения степени для косинуса и преобразуйте произведение косинусов в сумму.
- 18. Преобразуйте произведение первых двух сомножителей в сумму.
- 19. См. пример 5.
- 20. Замените tg 60° его числовым значением. Тангенсы выразите через синусы и косинусы соответствующих аргументов. Далее преобразуйте произведение тригонометрических функций в сумму.
- 21. Представьте $\sin^5 \alpha$ в виде $(\sin^2 \alpha)^2 \sin \alpha$. Применив формулы понижения степени, выполните действия возведения в степень и умножения.
- 22. Произведение косинусов преобразуйте в сумму (см. пример 5).
- 23. Произведение синусов преобразуйте в сумму.
- 24. Произведение тангенсов выразите через синусы и косинусы соответствующих аргументов. Далее см. пример 5.
- 25. Используйте формулу $\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$.
- 26. sin 60° замените его числовым значением. Произведение остальных сомножителей преобразуйте в сумму.
- 27. Левую часть умножьте и разделите на sin α. Далее произведение тригонометрических функций преобразуйте в сумму.
- 28. См. пример 5.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

1.
$$A = \frac{\cos 30^{\circ} - \cos 45^{\circ}}{2}$$
.

Далее подставьте числовые значения косинусов.

2.
$$A = \frac{\cos 90^\circ + \cos 60^\circ}{2}$$
.

3.
$$A = \frac{\sin 60^\circ + \sin 45^\circ}{2}$$
. Далее упростите.

4.
$$A = \frac{1}{2} \left(\cos \left(\alpha - \frac{\pi}{6} + \frac{\alpha}{2} + \frac{\pi}{6} \right) + \cos \left(\alpha - \frac{\pi}{6} - \frac{\alpha}{2} - \frac{\pi}{6} \right) \right)$$

5.
$$A = \frac{1}{2} (\sin 18^\circ + \sin 2^\circ) \cos 6^\circ = \frac{1}{2} (\sin 18^\circ \cos 6^\circ + \sin 2^\circ \cos 6^\circ).$$

Далее воспользуйтесь формулой (5.1).

6.
$$A = \frac{1}{2} (\cos 8x + \cos 2x) \cos 7x = \frac{1}{2} (\cos 8x \cos 7x + \cos 2x \cos 7x)$$
.

Далее произведение косинусов преобразуйте в сумму.

7.
$$A = \frac{1}{2} (\sin 4x + \sin (-2x)) \cos 4x = \frac{1}{2} (\sin 4x \cos 4x - \sin 2x \cos 4x)$$
.

Далее примените формулу двойного аргумента, второе слагаемое преобразуйте в сумму.

8.
$$A = \frac{1}{2} (\cos x - \cos 3x) \cdot \frac{1}{2} (\cos x - \cos 7x) = \frac{1}{4} (\cos^2 x - \cos x \cos 7x - \cos 3x \cos x + \cos 3x \cos 7x)$$
.

Далее понизьте степень косинуса, произведение косинусов преобразуйте в сумму и приведите подобные члены.

9.
$$A = 2 \sin x \cos x + 4 \sin^2 x = 4 \sin^2 x \sin 2x = 2 (1 - \cos 2x) \times \sin 2x = 2 \sin 2x - 2 \sin 2x \cos 2x$$
.

Далее примените формулу двойного аргумента.

10.
$$A = 2 \cos x \cdot 2 \sin x \cos x = 2 \cos x \sin 2x$$
.

11.
$$A = 4 \sin^2 \alpha \cos^2 \alpha 4 \cos \alpha = \sin^2 2\alpha 4 \cos \alpha =$$

= $2 \sin^2 2\alpha 2 \cos \alpha = (1 - \cos 4\alpha) 2 \cos \alpha =$
= $2 \cos \alpha - 2 \cos \alpha \cos 4\alpha$.

12.
$$A = 4 \sin^2 \alpha (2 \sin \alpha \cos \alpha)^3 = 4 \sin^2 \alpha \sin^3 2\alpha = 2 \sin^2 \alpha 2 \sin^2 2\alpha \sin 2\alpha$$
.

Далее примените формулы понижения степени, выполните умножение и произведение тригонометрических функций преобравуйте в сумму.

13.
$$A = \sin 4^{\circ} \cos 4^{\circ} - \frac{1}{2} (\sin 8^{\circ} + \sin 4^{\circ}) + \frac{1}{2} \sin 4^{\circ} = \dots$$

14.
$$A = 2 \cdot \frac{1}{2} (\cos 60^{\circ} + \cos 20^{\circ}) - \cos 20^{\circ}$$
.

15.
$$A = \sin 2x + 2 \cdot \frac{1}{2} \left(\sin \left(\frac{5\pi}{12} - x + \frac{5\pi}{12} + x \right) + \sin \left(\frac{5\pi}{12} - x - \frac{5\pi}{12} - x \right) \right)$$

 $-x = \sin 2x + \sin \frac{5\pi}{6} + \sin (-2x).$

Используйте свойство нечетности синуса и упростите.

16.
$$A = \cos 2x \frac{1 + \cos 2x}{2} - \frac{1}{4} \cos 4x - \frac{1}{2} \cos 2x = \frac{1}{2} \cos 2x + \frac{\cos^2 2x}{2} - \frac{1}{4} \cos 4x - \frac{1}{2} \cos 2x.$$

Далее понизьте степень косинуса.

17.
$$A = \frac{1+\cos 10}{2} + \frac{1+\cos 2}{2} - \frac{\cos 10 + \cos 2}{2}$$
.

18.
$$A = \frac{1}{2} (\sin 70^\circ + \sin 30^\circ) \cos 80^\circ = \frac{1}{2} \sin 70^\circ \cos 80^\circ + \frac{1}{2} \sin 30^\circ \cos 80^\circ = \frac{1}{2} \cdot \frac{1}{2} (\sin 150^\circ - \sin 10^\circ) + \frac{1}{2} \cdot \frac{1}{2} \cos 80^\circ.$$

Далее sin 150° замените через синус острого угла.

19. Произведение первых двух сомножителей преобразуйте в сумму:

$$A = \frac{1}{2} (\cos 60^{\circ} + \cos 50^{\circ}) \cos 65^{\circ} = \frac{1}{2} \cos 60^{\circ} \cos 65^{\circ} + \frac{1}{2} \cos 50^{\circ} \cos 65^{\circ}.$$

Второе слагаемое преобразуйте в сумму. Далее при вычислении cos 15° представьте его в виде cos (45°—30°).

20.
$$A = \sqrt{3} \frac{\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}}{\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{(\cos 20^{\circ} + \cos 60^{\circ}) \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \sin 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ} - \frac{1}{2} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ} \cos 80^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^{\circ}} = \frac{\sqrt{3} (\cos 20^{\circ} - \cos 60^{\circ}) \cos 80^{\circ}}{\cos 20^$$

Далее снова преобразуйте произведение тригонометрических функций в сумму.

21.
$$\sin^5 \alpha = (\sin^2 \alpha)^2 \sin \alpha = \left(\frac{1}{2}(1 - \cos 2\alpha)\right)^2 \sin \alpha = \frac{1}{4}\sin \alpha - \frac{1}{2}\sin \alpha \cos 2\alpha + \frac{1}{4}\sin \alpha \cos^2 2\alpha = \frac{1}{4}\sin \alpha - \frac{1}{4}(\sin 3\alpha - \sin \alpha) + \frac{1}{8}\sin \alpha(1 + \cos 4\alpha) = \frac{1}{2}\sin \alpha - \frac{1}{4}\sin 3\alpha + \frac{1}{8}\sin \alpha + \frac{1}{8}\sin \alpha\cos 4\alpha.$$

Далее преобразуйте произведение тригонометрических функций в сумму.

22.
$$4\cos\frac{x}{2}\cos x\cos\frac{3x}{2}=4\frac{\cos 2x+\cos x}{2}\cos x=2(\cos 2x\cos x+\cos^2 x).$$

Далее произведение косинусов преобразуйте в сумму и понизьте степень косинуса.

23.
$$4 \sin x \sin (60^\circ - x) \sin (60^\circ + x) = 4 \sin x - \frac{\cos 2x - \cos 120^\circ}{2} = 2 \sin x \cos 2x - 2 \sin x \cos 120^\circ.$$

Далее произведения тригонометрических функций преобразуйте в суммы и подставьте значение cos 120°.

Далее произведения преобразуйте в суммы.

25.
$$\sin^2 \alpha + \cos (60^\circ + \alpha) \cos (60^\circ - \alpha) = \frac{1 - \cos 2\alpha}{2} + \frac{\cos 120^\circ + \cos 2\alpha}{2}$$

Далее подставьте значения соз 120° и упростите.

26.
$$16 \sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = 16 \frac{\sqrt{3}}{2} \sin 20^{\circ} \sin 40^{\circ} \cdot \sin 80^{\circ} =$$

= $8\sqrt{3} \cdot \frac{1}{2} (\cos 20^{\circ} - \cos 60^{\circ}) \sin 80^{\circ} =$
= $4\sqrt{3} (\cos 20^{\circ} \sin 80^{\circ} - \frac{1}{2} \sin 80^{\circ}).$

Далее произведение преобразуйте в сумму и примените формулу приведения.

27.
$$\frac{4 \sin \alpha \cos \left(\frac{\pi}{6} - \alpha\right) \sin \left(\frac{\pi}{3} - \alpha\right)}{\sin \alpha} = \frac{4 \sin \alpha \left(\sin \frac{\pi}{6} + \sin \left(\frac{\pi}{2} - 2\alpha\right)\right) : 2}{\sin \alpha} = \frac{2 \sin \alpha \cdot \frac{1}{2} + 2 \sin \alpha \cos 2\alpha}{\sin \alpha}$$

Далее упростите.

28.
$$\sin(\pi + \alpha) \sin\left(\frac{4\pi}{3} + \alpha\right) \sin\left(\frac{2\pi}{3} + \alpha\right) = -\sin\alpha\left(\cos\frac{2\pi}{3} - \cos(2\pi + 2\alpha)\right)$$
: $2 = \sin\alpha\left(\cos 2\alpha - \cos\frac{2\pi}{3}\right)$: $2 = \frac{\sin\alpha\cos 2\alpha - \sin\alpha\left(-\frac{1}{2}\right)}{2}$.

Далее произведение преобразуйте в сумму.

КОНТРОЛЬНОЕ ЗАДАНИЕ

1. Преобразуйте произведение в сумму: 4 sin 11° cos 69° sin 22°.

Докажите:

- 2. $8 \cos 10^{\circ} \cos 50^{\circ} \cos 70^{\circ} = \sqrt{3} \log_{4} 4$.
- 3. $4\cos\frac{\alpha}{2}\cos\alpha\sin\frac{3\alpha}{2} = \sin\alpha + \sin2\alpha + \sin3\alpha$.
- 4. $\frac{\sin^2 3x}{\sin^2 x} \frac{\cos^2 3x}{\cos^2 x} = 8\cos 2x$.
- 5. $2 \sin 10^{\circ} \sin 40^{\circ} + \cos 50^{\circ} = \sqrt{3} : 2 \log_2 2$.
- 6. $\sin^6 x + \cos^6 x = 1 \frac{3}{4} \sin^2 2x$.
- 7. $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = (\log_2 256)^{-1}$. 8. $\log_2 \cos 20^{\circ} + \log_2 \cos 40^{\circ} + \log_2 \cos 80^{\circ} = -3$. 9. $\log \log 3^{\circ} \cdot \log \log 6^{\circ} \cdot \dots \cdot \log \log 87^{\circ} = 0$.
- 10. $\log_{\frac{1}{2}} \sin 70^{\circ} + \log_{\frac{1}{2}} \sin 50^{\circ} + \log_{\frac{1}{2}} \sin 10^{\circ} = 3.$

Ответы

1. $\cos 58^{\circ} + \sin 12^{\circ} - \cos 36^{\circ} + \cos 80^{\circ}$.

ЗАДАНИЕ 6

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. ФОРМУЛЫ СУММЫ И РАЗНОСТИ ОДНОИМЕННЫХ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

а) Сумма двух синусов

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}. \tag{6.1}$$

б) Разность двух синусов

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}.$$
 (6.2)

в) Сумма двух косинусов

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}.$$
 (6.3)

г) Разность двух косинусов

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}. \tag{6.4}$$

д) Сумма двух тангенсов

$$tg \alpha + tg \beta = \frac{\sin (\alpha + \beta)}{\cos \alpha \cos \beta}^{*)}. \tag{6.5}$$

е) Сумма двух котангенсов

$$\operatorname{ctg}\alpha + \operatorname{ctg}\beta = \frac{\sin(\alpha + \beta)^{**}}{\sin\alpha\sin\beta}.$$
 (6.6)

ж) Разность двух тангенсов

$$tg \alpha - tg \beta = \frac{\sin (\alpha - \beta)^{*}}{\cos \alpha \cos \beta}.$$
 (6.7)

з) Разность котангенсов

$$\operatorname{ctg}\alpha - \operatorname{ctg}\beta = \frac{\sin(\beta - \alpha)^{**}}{\sin\alpha\sin\beta}.$$
 (6.8)

^{*} Если $\cos \alpha \neq 0$, $\cos \beta \neq 0$.

УПРАЖНЕНИЯ

Преобразуйте в произведение следующие выражения:

1.
$$A = \cos(x - y) + \cos(x + y)$$
.

2.
$$A = \sin (2x - 30^{\circ}) - \sin (2x - 60^{\circ})$$
.

3.
$$A = \sin\left(x + \frac{\pi}{4}\right) + \cos\left(2x - \frac{\pi}{4}\right)$$
.

4.
$$A = \frac{\cos{(x-y)} - \cos{(x+y)}}{\cos{(x-y)} + \cos{(x+y)}}$$
. 5. $A = \text{tg } 43^\circ + \text{tg } 17^\circ$.

6.
$$A = tg(x + 30^{\circ}) - tg(x + 10^{\circ})$$
.

7.
$$A = \sqrt{3} \pm \lg x$$
. 8. $A = 1 + \sin \frac{x}{8}$.

9.
$$A = 1 + \sin x + \cos x$$
. 10. $A = 1 + \cos x + \cos \frac{x}{2}$.

11.
$$A = 1 - \lg x + \sec x$$
. 12. $A = \sin 40^{\circ} - 2\cos 10^{\circ} + \sin 20^{\circ}$.

13.
$$A = \sqrt{3} - 2 \sin 2x$$
. 14. $A = \sin x + \sin y + \sin (x + y)$.

15.
$$A = \frac{\sqrt{2} - \cos x - \sin x}{\sin x - \cos x}$$
 16. $A = 1 + \cos x + \sin x + \lg x$.

17.
$$A = \sin x + \sin y + \sin z$$
, если $x + y + z = 180^\circ$.

18.
$$A = 3 - 4 \cos 4x + \cos 8x - 8 \cos^4 2x$$
.

19.
$$A = tg^3 x - tg^2 x - 3tg x + 3$$
.

20.
$$A = \frac{\sin^2(x+y) - \sin^2 x - \sin^2 y}{\sin^2(x+y) - \cos^2 x - \cos^2 y}.$$

21.
$$A = 2 \sin x \sin y \cos (x - y) + 1 - \sin^2 x - \sin^2 y$$
.

22.
$$A = \cos^2(x-2y) - \cos^2(x-\frac{\pi}{2}) - \cos^2(2y-\pi)$$
.

23.
$$A = \sin^2\left(\frac{5\pi}{4} - 2x\right) - \sin^2\left(\frac{5\pi}{4} + 2x\right)$$
.

24.
$$A = \cos^2\left(\frac{5\pi}{8} + \alpha\right) - \sin^2\left(\frac{5\pi}{8} + \alpha\right)$$
.

25.
$$A = \sin 2x + \cos 4x - \sin 6x$$
.

26.
$$A = \cos 5x + \cos 8x + \cos 9x + \cos 12x$$
.

27.
$$A = 1 + tg \left(2\alpha - \frac{\pi}{2}\right) + sec\left(2\alpha + \frac{3}{2}\pi\right)$$
.

Ответы

1.
$$2\cos x \cos y$$
. 2. $2\sin \frac{\pi}{12} \cos \left(2x - \frac{\pi}{4}\right)$. 3. $2\sin \left(\frac{\pi}{4} + \frac{3x}{2}\right) \cos \frac{x}{2}$.
4. $\log x \log y$. 5. $\frac{\sqrt{3}}{2\cos 43^{\circ} \cos 17^{\circ}}$. 6. $\frac{\sin 20^{\circ}}{\cos (x + 30^{\circ}) \cos (x + 10^{\circ})}$.

4.
$$\lg x \lg y$$
. 5. $\frac{\sqrt{3}}{2 \cos 43^{\circ} \cos 17^{\circ}}$. 6. $\frac{\sin 20^{\circ}}{\cos (x + 30^{\circ}) \cos (x + 10^{\circ})}$.

7.
$$\frac{2\sin\left(\frac{\pi}{3}\pm x\right)}{\cos x}$$
. 8. $2\cos^2\left(\frac{\pi}{4}-\frac{x}{16}\right)$. 9. $2\sqrt{2}\cos\frac{x}{2}\cos\left(\frac{x}{2}-\frac{\pi}{4}\right)$.

10.
$$4\cos\frac{x}{2}\cos\left(\frac{x}{4} + \frac{\pi}{6}\right)\cos\left(\frac{x}{4} - \frac{\pi}{6}\right)$$
. 11. $\frac{-2\sqrt{2}\cos\frac{x}{2}\sin\left(\frac{x}{2} - \frac{\pi}{4}\right)}{\cos x}$.

12.
$$-\cos 10^{\circ}$$
. 13. $4\cos\left(\frac{\pi}{6}+x\right)\sin\left(\frac{\pi}{6}-x\right)$. 14. $4\sin\frac{x+y}{2}\cos\frac{x}{2}\cos\frac{y}{2}$.

15.
$$\lg\left(\frac{x}{2} - \frac{\pi}{8}\right)$$
. 16. $2\sqrt{2}\cos^2\frac{x}{2}\sin\left(x + \frac{\pi}{4}\right) : \cos x$.

17.
$$4\cos\frac{x}{2}\cos\frac{y}{2}\cos\frac{z}{2}$$
. 18. $-8\cos 4x$.

19.
$$4\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\sin\left(x+\frac{\pi}{3}\right)\sin\left(x-\frac{\pi}{3}\right):\cos^3x$$
.

20.
$$-\tan x + \tan y$$
. 21. $\cos^2(x-y)$. 22. $2\sin x + \cos 2y + \sin (2y-x)$.

23.
$$-\sin 4x$$
. 24. $-\cos(45^{\circ}+2\alpha)$. 25. $4\cos 4x\cos(\frac{\pi}{12}+x)\sin(\frac{\pi}{12}-x)$.

26.
$$4\cos\frac{17x}{2}\cos 2x\cos\frac{3x}{2}$$
. **27.** $\sqrt{2}\sin(45^{\circ}+\alpha):\cos\alpha$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- 1. Примените формулу преобразования суммы косинусов в произведение.
- 2. Примените формулу преобразования разности синусов в про-изведение.
- 3. Используйте сначала равенство $\cos \alpha = \sin \left(\frac{\pi}{2} \alpha \right)$, потом формулу преобразования суммы синусов в произведение.
- 4. Преобразуйте числитель и знаменатель в произведение.
- 5. Используйте формулу преобразования суммы тангенсов в про- изведение.
- 6. Используйте формулу преобразования разности тангенсов в произведение.
- 7. Замените 1/3 тангенсом соответствующего аргумента.
- 8. Замените синус косинусом дополнительного аргумента.
- 9. Преобразуйте сумму $1 + \cos x$ в произведение, а $\sin x$ разверните по формуле удвоения.
- 10. Представьте сумму первых двух слагаемых в виде произведения, вынесите $2\cos\frac{x}{2}$ за скобки.
- 11. Тангенс и секанс выразите через синус и косинус и выполните сложение.
- 12. Преобразуйте сумму первого и третьего слагаемых в произведение.
- 13. Вынесите за скобку коэффициент перед синусом, $\frac{\sqrt{3}}{2}$ замените синусом соответствующего аргумента.

- 14. Сумму первых двух слагаемых преобразуйте в произведение и к третьему слагаемому примените формулу двойного аргумента.
- 15. Двучлен $\cos x + \sin x$ и $\sin x \cos x$ преобразуйте в произведение.
- 16. Сгруппировав последние два слагаемых, вынесите tg x за скобки, общий множитель (1 $+\cos x$) преобразуйте в произведение.
- 17. Сумму первых двух слагаемых преобразуйте в произведение. Учтите, что $z = 180^\circ (x + y)$, и примените формулу приведения, а затем формулу двойного аргумента для синуса.
- 18. Выразите $\cos 8x$ через $\cos 4x$ по формуле двойного аргумента. Далее $8\cos^4 2x$ выразите через $\cos 4x$ с помощью формулы понижения степени.
- 19. Разложив данное выражение на множители способом группировки, примените формулы для преобразования суммы и разности тангенсов в произведение.
- 20. К последним двум слагаемым числителя и знаменателя примените формулы понижения степени для синуса и косинуса. Затем суммы косинусов преобразуйте в произведения.
- 21. Преобразуйте сумму последних трех слагаемых в произведение, предварительно понизив степени синусов.
- 22. Применив формулу приведения, понизьте степень первых двух слагаемых.
- 23. Понизьте степень синусов.
- 24. Понизьте степень косинуса и синуса.
- 25. Разность синусов преобразуйте в произведение.
- 26. Суммы косинусов, взятых попарно, преобразуйте в произведения.
- 27. Воспользовавшись свойством нечетности тангенса, примените формулы приведения.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

1.
$$A = 2 \cos \frac{x - y + x + y}{2} \cos \frac{x - y - x - y}{2}$$
.

2.
$$A = 2 \sin \frac{2x - \frac{\pi}{6} - 2x + \frac{\pi}{3}}{2} \cos \frac{2x - \frac{\pi}{6} + 2x - \frac{\pi}{3}}{2}$$
.

3.
$$A = \sin\left(x + \frac{\pi}{4}\right) + \sin\left(-2x + \frac{3\pi}{4}\right) =$$

$$= 2\sin\frac{x + \frac{\pi}{4} + \frac{3\pi}{4} - 2x}{2}\cos\frac{x + \frac{\pi}{4} + 2x - \frac{3\pi}{4}}{2}.$$

4.
$$A = \frac{-2\sin\frac{x-y+x+y}{2}\sin\frac{x-y-x-y}{2}}{2\cos\frac{x-y+x+y}{2}\cos\frac{x-y-x-y}{2}} = -\frac{\sin x \sin(-y)}{\cos x \cos(-y)}$$

5.
$$A = \frac{\sin(43^\circ + 17^\circ)}{\cos 43^\circ \cos 17^\circ}$$
.

6.
$$A = \lg(x + 30^\circ) - \lg(x + 10^\circ) = \frac{\sin(x + 30^\circ - x - 10^\circ)}{\cos(x + 30^\circ)\cos(x + 10^\circ)}$$

7.
$$A = \sqrt{3} \pm \lg x = \lg \frac{\pi}{3} \pm \lg x$$
. Далее см. примеры 5 и 6.

8.
$$A = 1 + \sin\frac{x}{8} = 1 + \cos\left(\frac{\pi}{2} - \frac{x}{8}\right)$$
. Далее примените формулу $1 + \cos\alpha = 2\cos^2\frac{\alpha}{2}$.

9.
$$A = 2\cos\frac{x}{2}\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) = 2\cos\frac{x}{2}\left(\cos\frac{x}{2} + \cos\left(\frac{\pi}{2} - \frac{x}{2}\right)\right) =$$

$$= 2\cos\frac{x}{2} \cdot 2\cos\frac{\frac{x}{2} + \frac{\pi}{2} - \frac{x}{2}}{2}\cos\frac{\frac{x}{2} - \frac{\pi}{2} + \frac{x}{2}}{2}}{\cos\frac{x}{2} \cdot 2\cos\frac{x}{2} \cdot 2\cos\frac{x}{2} - \frac{\pi}{2} + \frac{x}{2}}{2}}.$$

10.
$$A = 2\cos^2\frac{x}{2} + \cos\frac{x}{2} = 2\cos\frac{x}{2}\left(\cos\frac{x}{2} + \frac{1}{2}\right)$$

Далее $\frac{1}{2}$ замените косинусом соответствующего аргумента.

11.
$$A = 1 - \frac{\sin x}{\cos x} + \frac{1}{\cos x} = \frac{\cos x - \sin x + 1}{\cos x}$$
. Далее см. пример 9.

12. $A = \sin 40^{\circ} - 2\cos 10^{\circ} + \sin 20^{\circ} = 2\sin 30^{\circ}\cos 10^{\circ} - 2\cos 10^{\circ}$.

12.
$$A = \sin 40^{\circ} - 2\cos 10^{\circ} + \sin 20^{\circ} = 2\sin 30^{\circ}\cos 10^{\circ} - 2\cos 10^{\circ}$$

13.
$$A = 2\left(\frac{\sqrt{3}}{2} - \sin 2x\right) = 2\left(\sin \frac{\pi}{3} - \sin 2x\right)$$
.

14.
$$A = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} + 2\sin\frac{x+y}{2}\cos\frac{x+y}{2} =$$

= $2\sin\frac{x+y}{2}\left(\cos\frac{x-y}{2} + \cos\frac{x+y}{2}\right)$.

Далее сумму косинусов преобразуйте в произведение.

15.
$$A = \frac{\sqrt{2} - (\cos x + \sin x)}{\sin x - \cos x} = \frac{\sqrt{2} - \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)}{\sqrt{2} \sin \left(x - \frac{\pi}{4}\right)} = \frac{\sqrt{2} \left(1 - \sin \left(x + \frac{\pi}{4}\right)\right)}{\sqrt{2} \sin \left(x - \frac{\pi}{4}\right)} = \frac{1 - \cos \left(\frac{\pi}{4} - x\right)}{\sin \left(x - \frac{\pi}{4}\right)}.$$

Далее воспользуйтесь свойством четности косинуса и примените тождество $\frac{1-\cos\alpha}{\sin\alpha}=ig\frac{\alpha}{2}$.

16.
$$A = (1 + \cos x) + \lg x (1 + \cos x) = (1 + \cos x) (1 + \lg x) = 2\cos^2\frac{x}{2}(\lg\frac{\pi}{4} + \lg x).$$

Далее сумму тангенсов преобразуйте в произведение.

17.
$$A = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} + \sin(180^{\circ} - (x+y)) =$$

$$= 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} + \sin(x+y) = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} +$$

$$+ 2\sin\frac{x+y}{2}\cos\frac{x+y}{2} = 2\sin\frac{x+y}{2}\left(\cos\frac{x-y}{2} + \cos\frac{x+y}{2}\right).$$

Далее сумму косинусов преобразуйте в произведение. Затем вместо x + y подставьте $180^{\circ} - z$.

18.
$$A = 3 - 4 \cos 4x + 2 \cos^2 4x - 1 - 2 (2 \cos^2 2x)^2 = 2 - 4 \cos 4x + 2 \cos^2 4x - 2 (1 + \cos 4x)^2$$
.

19.
$$A = \lg^2 x (\lg x - 1) - 3 (\lg x - 1) = (\lg^2 x - 3) (\lg x - 1) =$$

 $= (\lg x - 1) (\lg x + \sqrt{3}) (\lg x - \sqrt{3}) = (\lg x - \lg \frac{\pi}{4}) (\lg x + 1) =$
 $+ \lg \frac{\pi}{3}) (\lg x - \lg \frac{\pi}{3}) = \frac{\sin \left(x - \frac{\pi}{4}\right)}{\cos x \cos \frac{\pi}{4}} \cdot \frac{\sin \left(x + \frac{\pi}{3}\right)}{\cos x \cos \frac{\pi}{3}} \times$

$$\times \frac{\sin\left(x-\frac{\pi}{3}\right)}{\cos x \cos\frac{\pi}{3}}.$$

20.
$$A = \frac{\sin^2(x+y) - 1 + \frac{\cos 2x + \cos 2y}{2}}{\sin^2(x+y) - 1 - \frac{\cos 2x + \cos 2y}{2}} =$$

$$= \frac{-\cos^2(x+y) + \cos(x+y)\cos(x-y)}{-\cos^2(x+y) - \cos(x+y)\cos(x-y)} =$$

$$= \frac{-\cos(x+y)(\cos(x+y)-\cos(x-y))}{-\cos(x+y)(\cos(x+y)+\cos(x-y))} = \frac{-2\sin x \sin y}{2\cos x \cos y}.$$

21.
$$A = 2 \sin x \sin y \cos (x - y) + 1 - \frac{1 - \cos 2x}{2} - \frac{1 - \cos 2y}{2} =$$

$$= 2\sin x \sin y \cos (x-y) + \frac{\cos 2x + \cos 2y}{2} =$$

$$= 2 \sin x \sin y \cos (x - y) + \frac{2 \cos (x + y) \cos (x - y)}{2} =$$

$$= \cos (x - y) (2 \sin x \sin y + \cos (x + y)) =$$

$$=\cos(x-y)$$
 (2 sin x sin y + cos x cos y - sin x sin y).

22.
$$A = \frac{1 + \cos 2(x - 2y)}{2} - \sin^2 x - \cos^2 2y = \frac{1}{2} + \frac{\cos 2(x - 2y)}{2} - \frac{1}{2} + \frac{\cos 2x}{2} - \cos^2 2y = \frac{\cos 2(x - 2y) + \cos 2x}{2} - \cos^2 2y = \frac{2\cos(2x - 2y)\cos 2y}{2} - \cos^2 2y = \cos 2y (\cos(2x - 2y) - \cos 2y) = \cos 2y (-2) \sin x \sin(x - 2y).$$

23.
$$A = \frac{1 - \cos 2\left(\frac{5\pi}{4} - 2x\right)}{2} - \frac{1 - \cos 2\left(\frac{5\pi}{4} + 2x\right)}{2} = \left(\cos 2\left(\frac{5\pi}{4} + 2x\right) - \cos 2\left(\frac{5\pi}{4} - 2x\right)\right) \cdot \frac{1}{2}$$

Разность косинусов преобразуйте в произведение.

24.
$$A = \frac{1 + \cos 2\left(\frac{5\pi}{8} + \alpha\right)}{2} - \frac{1 - \cos 2\left(\frac{5\pi}{8} + \alpha\right)}{2} = \frac{\cos 2\left(\frac{5\pi}{8} + \alpha\right) + \cos 2\left(\frac{5\pi}{8} + \alpha\right)}{2}$$

Сумму косинусов преобразуйте в произведение.

25. $A = 2 \cos 4x \sin (-2x) + \cos 4x = 2 \cos 4x \left(\frac{1}{2} - \sin 2x\right)$. Далее, введя вспомогательный угол, выражение в скобках преобразуйте в произведение.

26.
$$A = 2\cos\frac{17x}{2}\cos\frac{7x}{2} + 2\cos\frac{17x}{2}\cos\frac{x}{2} = 2\cos\frac{17x}{2}\left(\cos\frac{7x}{2} + \cos\frac{x}{2}\right)$$
.

Далее сумму косинусов преобразуйте в произведение.

27.
$$A = 1 - tg\left(\frac{\pi}{2} - 2\alpha\right) + \frac{1}{\cos\left(\frac{3\pi}{2} + 2\alpha\right)} = 1 - ctg 2\alpha + \frac{1}{\sin 2\alpha} = 1 - \frac{\cos 2\alpha}{\sin 2\alpha} + \frac{1}{\sin 2\alpha} = 1 + \frac{1 - \cos 2\alpha}{\sin 2\alpha} = 1 + tg \alpha.$$

Далее, введя вспомогательный угол, сумму преобразуйте в произведение.

КОНТРОЛЬНОЕ ЗАДАНИЕ

Преобразуйте в произведение:

1. $1 + \lg \alpha + \sec \alpha$. 2. $\sin^2 \alpha - 0.75$. 3. $1 - 3 \lg^2 \alpha$.

4. Докажите, что если A, B и C — углы треугольника, то $\sin^2 \widehat{A} + \sin^2 \widehat{B} + \sin^2 \widehat{C} - 2 = 2 \cos \widehat{A} \cos \widehat{B} \cos \widehat{C}$.

5. Определите вид треугольника, если $\sin \widehat{A} + \sin \widehat{B} = \sqrt{3}$ и $\cos \widehat{A} + \cos \widehat{B} = 1$, где \widehat{A} и \widehat{B} — величины углов треугольника. Покажите:

6. $tg 9^{\circ} - tg 27^{\circ} - tg 63^{\circ} + tg 81^{\circ} = 4$.

- 7. $\sin \alpha \sin (\beta \gamma) \cos (\alpha + \beta \gamma) + \sin \beta \sin (\gamma \alpha) \times \cos (\gamma + \alpha \beta) + \sin \gamma \sin (\alpha \beta) \cos (\alpha + \beta \gamma) = 0$.
- 8. $\lg \alpha \lg \beta + \lg \beta \lg \gamma + \lg \gamma \lg \alpha = 1$, если $\alpha + \beta + \gamma = \frac{\pi}{2}$.
- 9. $tg \alpha ctg \beta ctg \gamma = tg \alpha ctg \beta ctg \gamma$, если $\alpha + \beta + \gamma = \frac{\pi}{2}$.

Ответы

1.
$$\frac{2\sqrt{2}\cos\frac{\alpha}{2}\sin\left(\frac{\alpha}{2}+\frac{\pi}{4}\right)}{\cos\alpha}$$
 2.
$$\sin\left(\alpha+\frac{\pi}{3}\right)\cdot\sin\left(\alpha-\frac{\pi}{3}\right)$$
.

3.
$$\frac{4\sin\left(\frac{\pi}{6}+\alpha\right)\cdot\sin\left(\frac{\pi}{6}-\alpha\right)}{\cos^2\alpha}.$$

ЗАДАНИЕ 7

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. ПРОИЗВОДНЫЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Пусть задана некоторая функция y = f(x). По определению $y' = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta y}$. В дальнейшем будем пользоваться следующими формулами:

$$y = \sin x;$$
 $y' = \cos x;$ (7.1)
 $y = \cos x;$ $y' = -\sin x;$ (7.2)

$$y = \cos x; \qquad y' = -\sin x; \qquad (7.2)$$

$$y = \sin x;$$
 $y' = \cos x;$ (7.1)
 $y = \cos x;$ $y' = -\sin x;$ (7.2)
 $y = \tan x;$ $y' = \frac{1}{\cos^2 x};$ (7.3)

$$y = \operatorname{ctg} x;$$
 $y' = -\frac{1}{\sin^2 x};$ (7.4)

$$y = f_1(x) + f_2(x); y' = f'_1(x) \pm f'_2(x); (7.5)$$

$$y = u \cdot v; \qquad y' = u'v + uv'; \qquad (7.6)$$

$$y = f_{1}(x) + f_{2}(x); y' = f'_{1}(x) \pm f'_{2}(x); (7.5)$$

$$y = u \cdot v; y' = u'v + uv'; (7.6)$$

$$y = \frac{u}{v}; y' = \frac{u'v - uv'}{v^{2}}; (7.7)$$

$$y(x) = f(\varphi(x)); y'(x) = f'(\varphi(x)) \cdot \varphi'(x); (7.8)$$

$$y(x) = f(\varphi(x));$$
 $y'(x) = f'(\varphi(x)) \cdot \varphi'(x);$ (7.8)

$$\lim_{x\to 0}\frac{\sin x}{x}=1. \tag{7.9}$$

§ 2. ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Функция, обратная синусу, называется арксинусом

$$y = \arcsin x \Rightarrow \sin y = x$$
 $-\frac{\pi}{2} \leqslant \arcsin x \leqslant \frac{\pi}{2}$.

Функция, обратная косинусу, называется арккосинусом

$$y = \arccos x \Rightarrow \cos y = x$$
 $0 \le \arccos x \le \pi$.

Функция, обратная тангенсу, называется арктангенсом

$$y = \operatorname{arctg} x \Rightarrow \operatorname{tg} y = x$$
 $-\frac{\pi}{2} < \operatorname{arctg} x < \frac{\pi}{2}$.

Функция, обратная котангенсу, называется арккотангенсом

$$y = \operatorname{arcctg} x \Rightarrow \operatorname{ctg} y = x$$
 $0 < \operatorname{arcctg} x < \pi$.

УПРАЖНЕНИЯ

Найдите производную функции:

1.
$$y = \sin 4x$$
. 2. $y = \sin^3 2x$. 3. $y = \cos \left(\frac{x}{2} + 1\right)$.

4.
$$y = \cos\left(x^2 - \frac{\pi}{4}\right)$$
. 5. $y = \sin 3 \cos^2 \frac{x}{2}$.

6.
$$y = 3 \lg \left(\frac{\pi}{3} - x\right) + \operatorname{ctg^5} 2x$$
.

7.
$$y = \frac{10^3 x}{\sin^3 x}$$
. 8. $y = (x^3 - 5x) \text{ ctg } 3x$.

9. Из данных функций выберите возрастающие и убывающие:

a)
$$y = 3 \sin \left(x - \frac{\pi}{3}\right) + 5x - 1;$$

6)
$$y = \frac{1}{2}x - \cos x + 4;$$

B)
$$y = 3x - \cos 2x + \sin x + 5$$
;

r)
$$y = \sin \frac{x}{2} - 2x$$
;

д)
$$y = 3 \cos x - 2 \sin x - 5x$$
.

10. Напишите уравнение касательной к графику функции:

a)
$$y = \sin 2x$$
 в точке с абсциссой $\frac{\pi}{2}$;

б)
$$y = \lg x$$
 в точке с абсциссой $\frac{\pi}{4}$;

в)
$$y = \operatorname{ctg} \frac{x}{2}$$
 в точке с абсциссой $\frac{\pi}{2}$.

11. Найдите вторую производную следующих функций:

a)
$$y = \sin 2x$$
;

B)
$$y = \lg\left(\frac{\pi}{4} - 2x\right)$$
;

6)
$$y = \cos(x - \frac{\pi}{3});$$
 $r) y = \text{ctg}(1 - x).$

$$r) y = ctg(1-x).$$

12. Проверьте, что функция $y = C_1 \cos 2x + C_2 \sin 2x$ обращает равенство y'' + 4y = 0 в тождество.

13. Какая из функций $y = \sin x - x - \frac{\sin 2x}{x} + 1$ и $y = \sin x + \frac{\sin 2x}{x}$

 $+ x^2 + 1$ обращает равенство $y'' + y'\lg x = \sin 2x$ в тождество? 14. Вычислите предел:

a)
$$\lim \sin 2x$$
;

$$\Gamma) \lim_{x\to 0} \frac{\sin 4x}{9x};$$

6)
$$\lim_{x\to -\frac{\pi}{2}} \operatorname{tg} \frac{x}{2}$$
;

$$\lim_{x\to 0} \frac{\sin 5x}{\sin 7x};$$

B)
$$\lim_{x \to \frac{\pi}{4}} \left(\cos \left(x - \frac{\pi}{4} \right) - 2 \sin \left(x + \frac{\pi}{4} \right) \right)$$
;

e)
$$\lim_{x\to\pi} \frac{\sin 2x}{\sin 11x}$$
;

ж)
$$\lim_{x\to 1} (1-x) \operatorname{tg} \frac{\pi x}{2}$$
; з) $\lim_{x\to 0} \frac{1-\cos mx}{x^2}$; и) $\lim_{x\to 0} \frac{\operatorname{tg} x-\sin x}{x^3}$.

Вычислите:

15.
$$\sin\left(\arccos\left(-\frac{1}{2}\right) - \arctan\left(-\frac{1}{\sqrt{3}}\right)\right)$$
.

16.
$$\cos\left(\operatorname{arcctg}\left(-V\overline{3}\right) + \operatorname{arctg}\left(-V\overline{3}\right) + \operatorname{arcsin}\frac{1}{2}\right)$$
.

17.
$$tg\left(arcsin\left(-\frac{\sqrt{3}}{2}\right) + arccos\left(-\frac{1}{2}\right) + arctg 1\right)$$
.

Докажите справедливость следующих равенств:

18.
$$\sin\left(\frac{1}{2}\arccos\frac{1}{2}\right) = \frac{1}{2}$$
.

19.
$$\frac{1}{3} \arctan 1 + \frac{1}{4} \arccos \frac{1}{2} = \frac{1}{2} \arctan \sqrt{3}$$
.

20. Из истинности высказывания
$$\sin\frac{2}{3}\pi = \frac{\sqrt{3}}{2}$$
 следует ли истинность высказывания: $\arcsin\frac{\sqrt{3}}{2} = \frac{2\pi}{2}$?

21. Вычислите sin (arccos 0,6).

22. Докажите, что sin (arccos x) = $\sqrt{1-x^2}$.

23. Чему равен tg (arcsin x)?

24. Определите ctg (arccos x).

Вычислите:

25. $\sin (\operatorname{arcctg} x)$. 26. $\cos (\operatorname{arctg} x)$.

27.
$$\cos\left(\arcsin\left(-\frac{1}{3}\right)\right)$$
. 28. $tg\left(\arccos\left(-\frac{1}{4}\right)\right)$.

29.
$$\cos\left(\arctan\left(-\frac{3}{2}\right)\right)$$
. 30. $\operatorname{ctg}\left(\arcsin\left(-\frac{1}{4}\right)\right)$.

31.
$$\sin (\operatorname{arcctg} (-2))$$
. 32. $\cos \left(\operatorname{arcctg} \left(-\frac{7}{8}\right)\right)$.

33.
$$\sin\left(\arcsin\frac{5}{13} + \arcsin\frac{12}{13}\right)$$
. 34. $\cos\left(\arcsin\left(-\frac{12}{13}\right) + \arcsin\frac{4}{5}\right)$.

35.
$$\lg\left(\operatorname{arctg}\frac{1}{2} - \operatorname{arctg}\frac{1}{4}\right)$$
. 36. $\cos\left(\operatorname{arcctg}\frac{3}{4} + \operatorname{arcctg}\left(-\frac{12}{5}\right)\right)$.

37.
$$\sin\left(2\arcsin\frac{1}{7}\right)$$
. 38. $\sin\left(2\arctan 3\right)$.

39.
$$\sin\left(2\arctan\frac{1}{2}-\frac{1}{2}\arccos\frac{3}{4}\right)$$
.

40. Представьте $\arcsin \frac{4}{5}$ в виде арккосинуса.

41. Представьте $\arcsin \frac{12}{13}$ в виде арккотангенса.

42. Представьте $\arctan \frac{4}{3}$ в виде арксинуса.

43. Выразите $\frac{\pi}{2}$ — arcsin 0,2 через арккосинус.

44. Выразите $\frac{\pi}{2}$ — arccos $\frac{2}{3}$ через арксинус.

Проверьте справедливость следующих равенств:

45. $\arcsin \frac{9}{41} - \arccos \frac{4}{5} = -\arcsin \frac{84}{205}$.

46. $\arccos\left(-\frac{1}{7}\right) = \arccos\left(-\frac{13}{14}\right)$.

47. $2 \arctan \frac{1}{5} + \arctan \frac{1}{4} = \arctan \frac{32}{43}$.

48. Представьте $\arctan \frac{9}{40} + \arccos \frac{4}{5}$ в виде арксинуса.

49. Чему равен угол $\arcsin \frac{1}{3} + \arcsin \frac{3}{4}$?

50. Докажите, что arctg 1 + arctg 2 + arctg 3 = π .

Вычислите:

51. $\arcsin\left(\sin\left(-\frac{\pi}{7}\right)\right)$. 52. $\arcsin\left(\sin\frac{11}{10}\pi\right)$.

53. $\arccos\left(\cos\frac{6}{5}\pi\right)$. 54. $\arctan\left(\operatorname{tg}\left(-3010^{\circ}\right)\right)$.

55. $\arcsin\left(\cos\frac{\pi}{9}\right)$. 56. $\arcsin\left(\sin\left(-\frac{\pi}{7}\right)\right)$.

Ответы

1. $y' = 4\cos 4x$. 2. $y' = 6\sin^2 2x\cos 2x$. 3. $y' = -\frac{1}{2}\sin(\frac{x}{2}+1)$.

4. $y' = -2x \sin\left(x^2 - \frac{\pi}{4}\right)$. 5. $y' = -\frac{\sin 3}{2} \sin x$.

6. $y' = -\frac{3}{\cos^2 x \left(\frac{\pi}{3} - x\right)} - \frac{10 \operatorname{ctg}^4 2x}{\sin^2 2x}$. 7. $y' = \frac{3 \sin x}{\cos^4 x}$.

8. $y' = (3x^2 - 5) \operatorname{ctg} 3x - \frac{3(x^3 - 5x)}{\sin^2 3x}$.

9. а) Возрастающие функции а), в);

б) убывающие функции г), д).

10. a)
$$y = -2x + \pi$$
; b) $y = 2x - \frac{\pi}{2} + 1$; b) $y = -x + \frac{\pi}{2} - 1$.

11. a)
$$y'' = -4 \sin 2x$$
; 6) $y'' = -\cos x$

6)
$$y'' = -\cos\left(x - \frac{\pi}{3}\right);$$

B)
$$y'' = \frac{8\sin\left(\frac{\pi}{4} - 2x\right)}{\cos^3\left(\frac{\pi}{4} - 2x\right)};$$

r)
$$y'' = \frac{2\cos(1-x)}{\sin^3(1-x)}$$
.

13.
$$y = \sin x - x - \frac{\sin 2x}{2} + 1$$
.

14. a) 0; 6) -1; B) -1; r)
$$\frac{4}{9}$$
; π) $\frac{5}{7}$; e) $-\frac{2}{11}$; π) $\frac{2}{\pi}$;

3)
$$\frac{m^2}{2}$$
; N) $\frac{1}{2}$. 15. 0,5. 16. -0 ,5. 17. $-(2+\sqrt{3})$.

20. Her, так как
$$\frac{2\pi}{3} > \frac{\pi}{2}$$
. 21. 0,8. 23. $\frac{x}{\sqrt{1-x^2}}$. 24. $\frac{x}{\sqrt{1-x^2}}$.

25.
$$\frac{1}{\sqrt{1+x^2}}$$
. 26. $\frac{1}{\sqrt{1+x^2}}$. 27. $\frac{2\sqrt{2}}{3}$. 28. $-\sqrt{15}$. 29. $\frac{2}{\sqrt{13}}$.

30.
$$-\sqrt{15}$$
. 31. $\frac{\sqrt{5}}{5}$. 32. $-\frac{7}{\sqrt{113}}$. 33. 1. 34. $\frac{63}{65}$. 35. $\frac{2}{9}$.

36.
$$-\frac{16}{65}$$
. 37. $\frac{8\sqrt{3}}{49}$. 38. $\frac{3}{5}$. 39. $\frac{\sqrt{14}}{5} - \frac{3\sqrt{2}}{20}$.

40.
$$\arcsin \frac{4}{5} = \arccos \frac{3}{5}$$
. 41. $\arcsin \frac{12}{13} = \operatorname{arcctg} \frac{5}{12}$.

42.
$$\arctan \frac{4}{3} = \arcsin \frac{4}{5}$$
. 43. $\arccos 0.2$. 44. $\arcsin \frac{2}{3}$.

45—47. Равенства справедливы, так как равным значениям монотонной функции соответствуют равные значения аргументов.

48.
$$\arcsin \frac{156}{205}$$
. 49. $\arccos \frac{2\sqrt{14}-3}{12}$. 51. $-\frac{\pi}{7}$. 52. $-\frac{\pi}{10}$.

53.
$$\frac{4}{5}\pi$$
. 54. 50°. 55. $\frac{7\pi}{18}$. 56. $\frac{9}{14}\pi$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- 1. Воспользуйтесь правилом (7.8) дифференцирования сложной функции и (7.1).
- 2. Дифференцируйте эту функцию сначала как степенную, потом как синус аргумента 2x.
- 3. Воспользуйтесь правилом (7.8) дифференцирования сложной функции.
- 4. Примените формулу (7.8) и не забудьте, что производная постоянной $\frac{\pi}{4}$ равна нулю.

- 5. Учтите, что sin 3 постоянная величина. Воспользуйтесь формулами (7.8) и (7.2) и учтите, что sin $\frac{x}{2} \cos \frac{x}{2} = \frac{\sin x}{2}$.
- 6. Воспользуйтесь правилами (7.3), (7.4), (7.5) и (7.8). Учтите, что $\left(\frac{\pi}{3}-x\right)'=-1$.
- 7. Предварительно упростите функцию, выразив тангенс через синус и косинус, и представьте ее в виде степенной функции. (Можно бы было дифференцировать и как частное.)
- 8. Воспользуйтесь формулой (7.6).
- 9. Функция возрастающая, если ее производная положительная, и убывающая, если ее производная отрицательная. Производная в отдельных точках может обратиться в нуль.
- 10. a) Уравнение касательной ищите в виде уравнения прямой с угловым коэффициентом y = kx + b, где $k = f'(x_0)$ найдите из того, что точка $(x_0, f(x_0))$ лежит на прямой.
 - б) См. пример 10 а).
 - в) См. примеры 10 а) и 10 б).
- 11. а) Воспользуйтесь формулами (7.1), (7.2) и (7.8).
 - б) См. пример 11 а).
 - в) При дифференцировании сложной функции учтите, что $\left(\frac{\pi}{4}-2x\right)'=-2$.
 - r) Учтите, что (1 x)' = -1.
- 13. Учтите, что $1 + \cos 2x = 2 \cos^2 x$.
- 14. а) Воспользуйтесь непрерывностью синуса.
 - б) Тангенс в точке $-\frac{\pi}{4}$ непрерывен.
 - в) Воспользуйтесь непрерывностью синуса, косинуса и разности непрерывных функций.
 - г) Воспользуйтесь (7.9).
 - д) Представьте дробь $\frac{\sin 5x}{\sin 7x}$ в виде частного двух дробей вида $\frac{\sin A}{A}$ и воспользуйтесь теоремой о пределе частного.
 - е) Чтобы можно было воспользоваться (7.9), нужно, чтобы аргумент синуса стремился к нулю при $x \to \pi$. Поэтому, пользуясь формулами приведения, запишите дробь $\frac{\sin 2x}{\sin 11x} = \frac{-\sin (2\pi 2x)}{\sin (11\pi 11x)}$. Далее см. пример 14 д).
 - ж) Выразите тангенс через синус и косинус и $\cos \frac{\pi}{2} x$ представьте в виде $\sin \left(\frac{\pi}{2} - \frac{\pi}{2} x \right)$.

3) Воспользуйтесь равенством $1 - \cos mx = 2 \sin^2 \frac{m}{2} x$.

и) Выразите тангенс через синус и косинус.

- 15. Воспользовавшись тождествами $arccos(-x) = \pi arccos x$ и arctg(-x) = -arctg x, вычислите и подставьте значения аркфункций.
- 16. Воспользовавшись тождествами $\operatorname{arcctg}(-x) = \pi \operatorname{arcctg} x$ и $\operatorname{arctg}(-x) = -\operatorname{arctg} x$, вычислите и подставьте значения аркфункций.
- 17. См. примеры 15 и 16.
- 18. Вычислите и подставьте значения аркфункций.
- 19. См. пример 18.
- 20. Учтите, что $-\frac{\pi}{2} \leqslant \arcsin x \leqslant \frac{\pi}{2}$.
- 21. Обозначив arccos x через а, примените определение арккосинуса Синус выразите через косинус.
- 22. См. пример 21.
- 23. Обозначив arcsin x через α , примените определение арксинуса. Далее tg α выразите через sin α .
- 24. Обозначив arccos x через α , примените определение арккосинуса. Далее ctg α выразите через $cos \alpha$.
- 25. Обозначив arcctg x через α , примените определение арккотангенса. Затем $sin \alpha$ выразите через $ctg \alpha$.
- **26.** Обозначив arctg x через α , примените определение арктангенса, затем $\cos \alpha$ выразите через $tg \alpha$.
- 27. Воспользуйтесь тождеством arcsin $(-x) = -\arcsin x$ и свойством четности косинуса. Далее, обозначив arcsin $\frac{1}{3}$ через α , примените определение арксинуса.
- 28. Примените тождество агссоѕ $(-x) = \pi \arccos x$. Воспользуйтесь периодичностью и нечетностью тангенса. Обозначив агссоѕ $\frac{1}{4}$ через α и применив определение арккосинуса, выразите tg α через $\cos \alpha$.
- 29. Воспользуйтесь тождеством $\operatorname{arctg}(-x) = -\operatorname{arctg} x$ и свойством четности косинуса. Обозначив $\operatorname{arctg} \frac{3}{2}$ через α , примените оп-
- ределение арктангенса и $\cos \alpha$ выразите через $\operatorname{tg} \alpha$.

 30. Используйте тождество $\arcsin (-x) = -\arcsin x$ и нечетность котангенса. Обозначив $\arcsin \frac{1}{4}$ через α и применив определе
 - ние арксинуса, ctg α выразите через sin α .
- 31. Учтите тождество $arcctg(-x) = \pi arcctg x$ и используйте формулу приведения для синуса. Обозначив arcctg 2 через α

- и применив определение арккотангенса, выразите $\sin \alpha$ через $\cot \alpha$.
- 32. См. пример 31.
- 33. Обозначив $\frac{5}{13}$ через α , а $\arcsin\frac{12}{13}$ через β , примените определение арксинуса. Далее примените формулу для синуса суммы.
- 34. Используйте тождество $\arcsin(-x) = -\arcsin x$. Далее см. пример 33.
- 35. Обозначив $\arctan \frac{1}{2}$ через α , $\arctan \frac{1}{4}$ через β , примените определение арктангенса. Используйте формулу для тангенса разности двух аргументов.
- 36. См. пример 35.
- 37. Обозначив $\arcsin \frac{1}{7}$ через α и применив определение арксинуса, используйте формулу двойного аргумента для синуса.
- 38. См. пример 37.
- 39. Введя обозначения $\arctan \frac{1}{2} = \alpha$, $\arctan \frac{3}{4} = \beta$ и воспользовавшись определением аркфункций, примените формулу для синуса разности двух аргументов. Далее примените формулы двойного, половинного аргументов.
- 40. Обозначив $\frac{4}{5}$ через α и воспользовавшись определением арксинуса, найдите $\cos \alpha$. Далее воспользуйтесь определением арккосинуса.
- 41. Обозначьте $\frac{12}{13}$ через α . Воспользуйтесь определением арксинуса, определите $\sin \alpha$. Далее $\cot \alpha$ выразите через $\sin \alpha$.
- 42. Пусть $\arctan \frac{4}{5} = \alpha$. Воспользуйтесь определением арктангенса и выразите синус через тангенс.
- 43. Примените тождество $arcsin x + arccos x = \frac{\pi}{2}$.
- 44. См. пример 43.
- 45. Используя определения аркфункций, установите общий промежуток, в котором заключены левая и правая части доказываемого равенства. Затем, подобрав тригонометрическую функцию, монотонную на этом промежутке, вычислите ее для аргументов, равных левой и правой части.
- 46. См. пример 45.
- 47. См. пример 45.
- 48. См. пример 45.
- 49. Найдите промежуток, в котором находится искомая сумма, и представьте эту сумму в виде аркфункций, для которых найденный промежуток является областью изменения. Далее см. пример 45.

- 50. Замените arctg 1 через $\frac{\pi}{4}$ и докажите равносильное равенство arctg 2 μ arctg 3 = $\frac{3}{4}$ π .
- 51. Примените тождество $\arcsin{(\sin x)} = x$, $\left(-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}\right)$.
- 52. Представьте $\sin\frac{11\pi}{10}$ в виде синуса аргумента, заключенного в промежутке $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$, для чего используйте формулу приведения. Затем примените тождество arcsin ($\sin x$) = x, справедливое в этом промежутке.

53. См. пример 52. Примените тождество arccos ($\cos x$) = x, справедливое при $0 \le x \le \pi$.

- 54. tg (—3010°) представьте в виде тангенса угла, заключенного в интервале]—90°, 90°[, на котором справедливо тождество агсtg (tg x) = x. Для этого воспользуйтесь свойством нечетности и периодичности тангенса.
- 55. Представьте $\cos\frac{\pi}{9}$ в виде $\sin\left(\frac{\pi}{2}-\frac{x}{9}\right)$ и примените тождество $\arcsin\left(\sin x\right)=x$, справедливое при $-\frac{\pi}{2}\leqslant x\leqslant\frac{\pi}{2}$.
- **56.** Воспользуйтесь равенством $\sin\left(-\frac{\pi}{7}\right) = \cos\left(\frac{\pi}{2} + \frac{\pi}{7}\right)$ и тождеством агссоз ($\cos x$) = x в интервале [0; π].

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

- 1. Согласно формуле (7.1) производная синуса равна косинусу того же аргумента, но аргумент косинуса не x, а 4x, поэтому нужно дифференцировать по формуле (7.8) $y' = \cos 4x \cdot 4$.
- 2. Сначала дифференцируйте как степенную функцию, получите $3 \sin^2 2x$ и умножайте на производную $\sin 2x$. Имеете $y' = 3 \sin^2 2x \cos 2x 2$.
- 3. По формулам (7.2) и (7.8) $y' = -\sin\left(\frac{x}{2} + 1\right) \cdot \frac{1}{2}$. При дифференцировании $\frac{x}{2} + 1$ воспользовались формулой (1.5) и учли, что производная постоянной равна нулю.
- 4. Согласно формулам (7.2) и (7.8) $y' = -\sin\left(x^2 \frac{\pi}{4}\right) \cdot 2x$.
- 5. Вынесите постоянный множитель sin 3 за знак производной и продифференцируйте сначала степенную функцию, потом косинус и наконец $\frac{x}{2}: y' = \sin 3 \cdot 2 \cos \frac{x}{2} \left(-\sin \frac{x}{2} \right) \cdot \frac{1}{2}$.
- 6. Производная суммы равна сумме производных, поэтому $y' = \left(3 \operatorname{tg} \left(\frac{\pi}{3} x\right)\right)' + (\operatorname{ctg}^5 2x)'$. В первом слагаемом постоян-

ную 3 вынесите за знак производной и учтите, что $\left(\frac{\pi}{3} - x\right) = -1$. Второе слагаемое дифференцируйте сначала как степенную функцию:

$$y' = \frac{3}{\cos^2\left(\frac{\pi}{3} - x\right)} \cdot (-1) + 5 \operatorname{ctg}^{2} 2x \cdot \left(-\frac{1}{\sin^2 2x}\right) \cdot 2.$$

- 7. $\frac{\operatorname{tg}^3 x}{\sin^3 x} = \frac{\sin^3 x}{\cos^3 x \sin^3 x} = \frac{1}{\cos^3 x} = (\cos x)^{-3}$. Теперь продифференцируйте эту сложную функцию как степенную $y' = -3 (\cos x)^{-4} (-\sin x)$.
- 8. Дифференцируйте как произведение и учтите, что ctg 3x есть сложная функция: $y' = (3x^2 5)$ ctg $3x + (x^3 5x)\left(-\frac{1}{\sin^2 3x}\right) \cdot 3$.
- 9. а) Производная функции $y = 3\sin\left(x \frac{\pi}{3}\right) + 5x 1$ равна $y' = 3\cos\left(x \frac{\pi}{3}\right) + 5$. Так как $\left|\cos\left(x \frac{\pi}{3}\right)\right| \leqslant 1$, то $y' = 3\cos\left(x \frac{\pi}{3}\right) + 5 > 0$ везде на множестве R. Аналогично для функции $y = 3x \cos 2x + \sin x + 5$ $y' = 3 + 2\sin 2x + \cos x > 0$, так как $\left|\sin 2x\right| \leqslant 1$ и $\left|\cos x\right| \leqslant 1$.

б) Функция $y = \sin\frac{x}{2} - 2x$ убывающая потому, что ее производная $y' = \frac{1}{2}\cos\frac{x}{2} - 2 < 0$ при любых $x \in R$. Аналогично функция $y = 3\cos x - 2\sin x - 5x$ убывающая, потому что $y' = -3\sin x - 2\cos x - 5 < 0$.

Функция же $y = \frac{1}{2}x - \cos x + 4$ при некоторых значениях x возрастает, при других убывает, так как ее производная $y' = \frac{1}{2} + \sin x$ может принимать как положительные, так и отрицательные значения.

10. а) Уравнение касательной y=kx+b, $k=2\cos 2\cdot \frac{\pi}{2}=$ $=2\cos \pi=-2$, точка M_0 с координатами $x_0=\frac{\pi}{2}$ и $y_0=\sin 2\cdot \frac{\pi}{2}=\sin \pi=0$ лежит на касательной, следовательно, координаты $M_0\Big(\frac{\pi}{2};\,0\Big)$ должны удовлетворять уравнению касательной. Поэтому $0=-2\cdot \frac{\pi}{2}+b\Rightarrow b=\pi$. Таким образом уравнение искомой касательной $y=-2x+\pi$;

6)
$$k = \frac{1}{\cos^2 \frac{\pi}{4}} = 2$$
; $M_0\left(\frac{\pi}{4}; \lg \frac{\pi}{4}\right)$, τ . e. $M_0\left(\frac{\pi}{4}; 1\right)$, поэтому
$$1 = 2 \cdot \frac{\pi}{4} + b \Rightarrow b = 1 - \frac{\pi}{2};$$

B)
$$k = -\frac{1}{2\sin^2\frac{\pi}{4}} = -1$$
; $M_0(\frac{\pi}{2}; 1)$, nostomy $-1 = -\frac{\pi}{2} + b \Rightarrow b = \frac{\pi}{2} - 1$.

- 11. а) По формулам (7.1) и (7.8) $y' = \cos 2x \cdot 2$. При дифференцировании полученной функции получите y'' = 2 (—sin 2x) · 2.
 - б) См. пример 11 а).

в)
$$y' = \frac{1}{\cos^2\left(\frac{\pi}{4} - 2x\right)} \cdot (-2)$$
. Для повторного дифференцирова-

ния можно пользоваться правилом дифференцирования частного, но лучше представить функцию y'(x) в виде степен-

Ной:
$$y' = -2\left(\cos\left(\frac{\pi}{4} - 2x\right)\right)^{-2}$$
.

Тогда $y'' = (-2) \cdot (-2) \left(\cos\left(\frac{\pi}{4} - 2x\right)\right)^{-3} \left(-\sin\left(\frac{\pi}{4} - 2x\right)\right) \times (-2) = \frac{8\sin\left(\frac{\pi}{4} - 2x\right)}{\cos^3\left(\frac{\pi}{4} - 2x\right)}$.

 $y' = -\frac{1}{\sin^2(1-x)} \cdot (-1)$. Представьте y'(x) в виде степенной

функции: $y' = (\sin(1-x))^{-2}$ (см. 11 a).

12. $y' = -2C_1 \sin 2x + 2C_2 \cos 2x$ и $y'' = -4C_1 \cos 2x - 4C_2 \sin 2x$. Подставьте найденные первую и вторую производные функции в равенство y'' + 4y = 0 и убедитесь, что получится тождество.

13. Для первой функции $y' = \cos x - 1 - \cos 2x$, $y'' = -\sin x + 2 \sin 2x$. Подставьте в равенство и получите $-\sin x + 2 \sin 2x + (\cos x - 1 - \cos 2x)$ tg $x = \sin 2x$. Так как $1 + \cos 2x = 2 \cos^2 x$, то $-\sin x + 2 \sin 2x + (\cos x - 2\cos^2 x)$ $\times \frac{\sin x}{\cos x} = \sin 2x$ и $-\sin x + 2 \sin 2x + (1 - 2\cos x) \sin x = \cos x$

 $= \sin 2x \Rightarrow \sin 2x = \sin 2x.$

Так как $2 \sin x \cos x = \sin 2x$.

Для второй функции: $y' = \cos x + 2x$; $y'' = -\sin x + 2$ Подставив в равенство, получите— $\sin x + 2 + (\cos x + 2x)$ tg $x = \sin 2x$. Тождества нет.

14. a)
$$\lim \sin 2x = \sin 2 \cdot \frac{\pi}{2} = 0$$
.

6)
$$\lim_{x \to -\frac{\pi}{2}} \operatorname{tg} \left(-\frac{\pi}{2} \right) \cdot \frac{1}{2} = \operatorname{tg} \left(-\frac{\pi}{4} \right) = -1.$$

E)
$$\lim_{x \to \frac{\pi}{4}} \left(\cos \left(x - \frac{\pi}{4} \right) - 2 \sin \left(x + \frac{\pi}{4} \right) \right) = \cos \left(\frac{\pi}{4} - \frac{\pi}{4} \right) - 2 \sin \left(\frac{\pi}{4} + \frac{\pi}{4} \right)$$

$$+\frac{\pi}{4}$$
)=1-2=-1.

r)
$$\lim_{x\to 0} \frac{\sin 4x}{9x} = \lim_{x\to 0} \frac{4}{9} \cdot \frac{\sin 4x}{4x} = \frac{4}{9} \lim_{x\to 0} \frac{\sin 4x}{4x} = \frac{4}{9} \cdot 1$$
.

Учтите, что аргумент синуса (4x) и знаменатель дроби должны быть одинаковыми, только тогда верно равенство (7.9).

д) Представьте дробь в виде: $\frac{\sin 5x}{\sin 7x} = \frac{5}{7} \cdot \frac{\sin 5x}{5x} : \frac{\sin 7x}{7x}$, найдите предел частного.

e)
$$\lim_{x\to\pi} \frac{\sin 2x}{\sin 11x} = -\lim_{x\to\pi} \frac{\sin 2(\pi-x)}{\sin 11(\pi-x)} = -\frac{2}{11}$$
. Cm. 14 д).

$$\lim_{x \to 1} (1 - x) \operatorname{tg} \frac{\pi}{2} x = \lim_{x \to 1} \frac{(1 - x) \sin \frac{\pi}{2} x}{\cos \frac{\pi}{2} x} = \lim_{x \to 1} \sin \frac{\pi}{2} x \times \lim_{x \to 1} \frac{1 - x}{\sin \frac{\pi}{2} x} = \lim_{x \to 1} \frac{1 - x}{\sin \frac{\pi}{2} x}$$

$$\times \lim_{x \to 1} \frac{1-x}{\cos \frac{\pi}{2}x} = 1 \cdot \lim_{x \to 1} \frac{1-x}{\sin \left(\frac{\pi}{2} - \frac{\pi}{2}x\right)} = \lim_{x \to 1} \frac{1}{\sin \left(\frac{\pi}{2} - \frac{\pi}{2}x\right)} \cdot \frac{2}{\pi} \cdot \frac{2}{\pi}$$

3)
$$\lim_{x \to 0} \frac{1 - \cos mx}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{m}{2}x}{x^2} = \lim_{x \to 0} \frac{m^2}{2} \left(\frac{\sin \frac{m}{2}x}{\frac{m}{2}x}\right)^2 = \lim_{x \to 0} \frac{1 - \cos mx}{x^2} = \lim_{x \to 0} \frac{m^2}{2} \left(\frac{\sin \frac{m}{2}x}{\frac{m}{2}x}\right)^2 = \lim_{x \to 0} \frac{1 - \cos mx}{x^2} = \lim_{x \to 0} \frac{m^2}{2} \left(\frac{\sin \frac{m}{2}x}{\frac{m}{2}x}\right)^2 = \lim_{x \to 0} \frac{1 - \cos mx}{x^2} = \lim_{x \to 0} \frac{m^2}{2} \left(\frac{\sin \frac{m}{2}x}{\frac{m}{2}x}\right)^2 = \lim_{x \to 0} \frac{1 - \cos mx}{x^2} = \lim_{x \to 0} \frac{m^2}{2} \left(\frac{\sin \frac{m}{2}x}{\frac{m}{2}x}\right)^2 = \lim_{x \to 0} \frac{m^2}{2} \left(\frac{\sin \frac{m}{2}x}{\frac{m}{2$$

$$=\frac{m^2}{2}\lim_{x\to 0}\left(\frac{\sin\frac{m}{2}x}{\frac{m}{2}x}\right)^{\frac{2}{2}}.$$

H)
$$\lim_{x\to 0} \frac{\lg x - \sin x}{x^3} = \lim_{x\to 0} \frac{\sin x \left(\frac{1}{\cos x} - 1\right)}{x^3} = \lim_{x\to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} \cdot \frac{1 - \cos x}{x^2}$$
.

15.
$$\sin\left(\arccos\left(-\frac{1}{2}\right) - \arctan\left(-\frac{1}{\sqrt{3}}\right)\right) = \sin\left(\pi - \arccos\frac{1}{2} + \arctan\left(\frac{1}{\sqrt{3}}\right)\right) = \sin\left(\pi - \frac{\pi}{3} + \frac{\pi}{6}\right)$$

Далее примените формулу приведения.

16.
$$\cos\left(\operatorname{arcctg}(-\sqrt{3}) + \operatorname{arctg}(-\sqrt{3}) + \arcsin\frac{1}{2}\right) = \cos\left(\pi - \operatorname{arcctg}\sqrt{3} - \operatorname{arctg}\sqrt{3} + \arcsin\frac{1}{2}\right) = \cos\left(\frac{5\pi}{6} - \frac{\pi}{3} + \frac{\pi}{6}\right)$$

17.
$$tg\left(arcsin\left(\frac{-\sqrt{3}}{2}\right) + arccos\left(-\frac{1}{2}\right) + arctg 1\right) = tg\left(-arcsin\frac{\sqrt{3}}{2}\right) + \pi - arccos\frac{1}{2} + arctg 1\right) = tg\left(-\frac{\pi}{3} + \frac{2\pi}{3} + \frac{\pi}{4}\right) = tg\left(\frac{\pi}{3} + \frac{\pi}{4}\right).$$

Далее примените формулу для тангенса суммы.

18.
$$\sin\left(\frac{1}{2}\arccos\frac{1}{2}\right) = \sin\left(\frac{1}{2}\cdot\frac{\pi}{3}\right)$$
.

19.
$$\frac{1}{3} \arctan 1 + \frac{1}{4} \arccos \frac{1}{2} = \frac{1}{3} \cdot \frac{\pi}{4} + \frac{1}{4} \cdot \frac{\pi}{3} = \frac{\pi}{12} + \frac{\pi}{12} = \frac{\pi}{6}$$
.

Аналогичными вычислениями убедитесь, что правая часть также равна $\frac{\pi}{6}$.

20. Her, так как
$$\frac{2\pi}{3} > \frac{\pi}{2}$$
, $a = \frac{\pi}{2} < \arcsin \frac{\sqrt{3}}{2} < \frac{\pi}{2}$.

21. Пусть
$$\arccos 0.6 = \alpha$$
, тогда $0 \le \alpha \le \pi$, $\cos \alpha = 0.6$; $\sin (\arccos 0.6) = \sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - (0.6)^2}$.

22. Пусть
$$\arccos x = \alpha$$
, тогда $0 \le \alpha \le \pi$, $\cos \alpha = x$ $\sin (\arccos x) = \sin \alpha = \sqrt{1 - \cos^2 \alpha}$.

23. Положим
$$\arcsin x = \alpha$$
, тогда $-\frac{\pi}{2} \leqslant \alpha \leqslant \frac{\pi}{2}$, $\sin \alpha = x$,

$$\operatorname{tg}(\arcsin x) = \operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\sin \alpha}{\sqrt{1 - \sin^2 \alpha}}.$$

Далее подставьте значение синуса.

24. Положим $\arccos x = \alpha$, тогда $0 \le \alpha \le \pi$, $\cos \alpha = x$, $\operatorname{ctg}(\arccos x) = \operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{\cos \alpha}{\sqrt{1 - \cos^2 \alpha}}$.

Далее подставьте значение косинуса.

25. Положим $\operatorname{arcctg} x = \alpha$, $\operatorname{тогда} 0 < \alpha < \pi$, $\operatorname{ctg} \alpha = x$, $\sin(\operatorname{arcctg} x) = \sin \alpha = \frac{1}{\sqrt{1 + \operatorname{ctg}^2 \alpha}}$.

Затем подставьте значение ctg a.

26. Пусть $\arctan x = \alpha$, $\arctan - \frac{\pi}{2} < \alpha < \frac{\pi}{2}$ и $\lg \alpha = x$, $\cos (\arctan x) = \cos \alpha = \frac{1}{\sqrt{1 + \lg^2 \alpha}}$.

Подставив значение tg α, получите окончательный результат.

27. $\cos\left(\arcsin\left(-\frac{1}{3}\right)\right) = \cos\left(-\arcsin\frac{1}{3}\right) = \cos\left(\arcsin\frac{1}{3}\right) = \cos\alpha = \sqrt{1-\sin^2\alpha},$ где $\alpha = \arcsin\frac{1}{3}$, отсю да $\sin\alpha = \frac{1}{3}$.

Далее подставьте значение sin a.

28. $tg\left(arccos\left(-\frac{1}{4}\right)\right) = tg\left(\pi - arccos\frac{1}{4}\right) = -tg\left(arccos\frac{1}{4}\right) =$ $= -tg\alpha = -\frac{\sqrt{1-\cos^{2}\alpha}}{\cos\alpha}, \text{ где } \alpha = arccos\frac{1}{4}, \text{ откуда } \cos\alpha = \frac{1}{4},$ $0 \leqslant \alpha \leqslant \pi.$

Далее подставьте значение соѕ α.

- 29. $\cos\left(-\arctan\frac{3}{2}\right) = \cos\alpha = \frac{1}{\sqrt{1+\lg^2\alpha}}$, где $\alpha = \arctan\frac{3}{2}$, a $\lg\alpha = \frac{3}{2}$; $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$. Далее подставьте значение $\lg\alpha$.
- 30. $\operatorname{ctg}\left(\operatorname{arcsin}\left(-\frac{1}{4}\right)\right) = \operatorname{ctg}\left(-\operatorname{arcsin}\frac{1}{4}\right) = -\operatorname{ctg}\left(\operatorname{arcsin}\frac{1}{4}\right) =$ $= -\operatorname{ctg}\alpha = -\frac{\cos\alpha}{\sin\alpha} = -\frac{\sqrt{1-\sin^2\alpha}}{\sin\alpha}, \text{ где }\alpha = \operatorname{arcsin}\frac{1}{4}, \text{ a } \sin\alpha =$ $= \frac{1}{4}; \quad -\frac{\pi}{2} \leqslant \alpha \leqslant \frac{\pi}{2}. \text{ Далее подставьте значение } \sin\alpha.$
- 31. $\sin (\operatorname{arcctg} (-2)) = \sin (\pi \operatorname{arcctg} 2) = \sin (\operatorname{arcctg} 2);$ $\sin \alpha = \frac{1}{\sqrt{1 + \operatorname{ctg}^2 \alpha}},$ где $\alpha = \operatorname{arcctg} 2$, откуда $\operatorname{ctg} \alpha = 2$, $0 < \alpha < \pi$. Далее подставьте значение $\operatorname{ctg} \alpha$.
- 32. $\cos\left(\operatorname{arcctg}\left(-\frac{7}{8}\right)\right) = \cos\left(\pi \operatorname{arcctg}\frac{7}{8}\right) = -\cos\left(\operatorname{arcctg}\frac{7}{8}\right) =$ $= -\cos\alpha = -\frac{\operatorname{ctg}\alpha}{\sqrt{1+\operatorname{ctg}^2\alpha}}, \text{ где } \alpha = \operatorname{arcctg}\frac{7}{8}, \text{ a } \operatorname{ctg}\alpha = \frac{7}{8},$ $0 < \alpha < \pi. \text{ Затем подставьте значение ctg } \alpha.$
- 33. Пусть $\arcsin \frac{5}{13} = \alpha$, $\arcsin \frac{12}{13} = \beta$, тогда $-\frac{\pi}{2} \leqslant \alpha \leqslant \frac{\pi}{2}$, $\sin \alpha = \frac{5}{13}$, $-\frac{\pi}{2} \leqslant \beta \leqslant \frac{\pi}{2}$, $\sin \beta = \frac{12}{13}$, $\sin \left(\arcsin \frac{5}{13} + \arcsin \frac{12}{13}\right) = \sin (\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$.

Подставьте значения синусов и косинусов; предварительно выразите косинусы через синусы соответствующих аргументов.

34. Пусть
$$\arcsin \frac{4}{5} = \alpha$$
 и $\arcsin \frac{12}{13} = \beta$, где $-\frac{\pi}{2} \leqslant \alpha \leqslant \frac{\pi}{2}$, $-\frac{\pi}{2} \leqslant \beta \leqslant \frac{\pi}{2}$, $\sin \alpha = \frac{4}{5}$, $\sin \beta = \frac{12}{13}$; $\cos \left(\arcsin \left(-\frac{12}{13}\right) + \arcsin \frac{4}{5}\right) = \cos \left(\arcsin \frac{4}{5} - \arcsin \frac{12}{13}\right) = \cos (\alpha - \beta) = \cos \alpha \times \cos \beta + \sin \alpha \sin \beta$.

Подставьте значения тригонометрических функций.

35. Пусть
$$\arctan \frac{1}{2} = \alpha$$
, $\arctan \frac{1}{4} = \beta$, тогда $\tan \alpha = \frac{1}{2}$, $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$, $\tan \beta = \frac{1}{4}$, $-\frac{\pi}{2} < \beta < \frac{\pi}{2}$; $\tan \beta = \frac{1}{4}$; $\tan \beta$

Значения тангенсов подставьте в полученное выражение.

36. Пусть
$$\operatorname{arcctg} \frac{3}{4} = \alpha$$
, $\operatorname{arcctg} \left(-\frac{12}{5} \right) = \beta$, $\operatorname{ctg} \beta = -\frac{12}{5}$, тогда $\operatorname{ctg} \alpha = \frac{3}{4}$, $0 < \alpha < \pi$, $0 < \beta < \pi$.

Учитывая это, находим $\cos \left(\operatorname{arcctg} \frac{3}{4} + \operatorname{arcctg} \left(-\frac{12}{5} \right) \right) =$

$$= \cos \left(\operatorname{arcctg} \frac{3}{4} + \pi - \operatorname{arcctg} \left(-\frac{12}{5} \right) \right) = \cos \left(\pi + \left(\operatorname{arcctg} \frac{3}{4} - \operatorname{arcctg} \frac{12}{5} \right) \right) = -\cos \left(\alpha - \beta \right) =$$

$$= -\left(\cos \alpha \cos \beta + \sin \alpha \sin \beta \right); \cos \alpha = \frac{\operatorname{ctg} \alpha}{\sqrt{1 + \operatorname{ctg}^2 \alpha}}, \sin \alpha =$$

$$= \frac{1}{\sqrt{1 + \operatorname{ctg}^2 \alpha}}.$$

Аналогично для $\cos \beta$ и $\sin \beta$.

37. Пусть $\arcsin\frac{1}{7}=\alpha$, тогда $\sin\alpha=\frac{1}{7}$; $-\frac{\pi}{2}\leqslant\alpha\leqslant\frac{\pi}{2}$, $\sin\left(2\arcsin\frac{1}{7}\right)=2\sin\alpha\cos\alpha$. Подставьте значения $\sin\alpha$ и $\cos\alpha$.

38. Пусть $\arctan 3 = \alpha$, тогда $\tan \alpha = 3$, $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$, $\sin (2 \arctan 3) = 2 \sin \alpha \cos \alpha$.

Далее подставьте значения $\sin \alpha$ и $\cos \alpha$, применив тождества $\cos \alpha = \frac{1}{\sqrt{1+tg^2\,\alpha}}$, $\sin \alpha = tg\,\alpha\cos\alpha = \frac{tg\,\alpha}{\sqrt{1+tg^2\,\alpha}}$.

39. Пусть
$$\arctan \frac{1}{2} = \alpha$$
, $\arccos \frac{3}{4} = \beta$, тогда $\sec \alpha = \frac{1}{2}$; $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$; $\cos \beta = \frac{3}{4}$; $0 \leqslant \beta \leqslant \pi$ и $0 \leqslant \frac{\beta}{2} \leqslant \frac{\pi}{2}$; $\sin \left(2 \arctan \frac{1}{2} - \frac{1}{2} \arccos \frac{3}{4} \right) = \sin \left(2\alpha - \frac{1}{2}\beta \right) = \sin 2\alpha \cos \frac{1}{2}\beta - \sin \frac{1}{2}\beta \cos 2\alpha$.

Применив формулы двойного аргумента $\sin 2\alpha = \frac{2 \operatorname{tg} \alpha}{1 + \operatorname{tg}^2 \alpha}$,

- $\cos 2\alpha = \frac{1-tg^2\,\alpha}{1+tg^3\,\alpha}$ и формулы половинного аргумента $\sin \frac{\beta}{2} = \sqrt{\frac{1-\cos\beta}{2}}$, $\cos \frac{\beta}{2} = \sqrt{\frac{1+\cos\beta}{2}}$, подставьте найденные значения функций.
- 40. Пусть $\arcsin \frac{4}{5} = \alpha$, тогда $\sin \alpha = \frac{4}{5}$, $0 < \alpha < \frac{\pi}{2}$ (так как $\sin \alpha > 0$), $\cos \alpha = \sqrt{1 \sin^2 \alpha} = \sqrt{1 \left(\frac{4}{5}\right)^2} = \frac{3}{5}$, $\alpha = \arccos \frac{3}{5}$.
- 41. Пусть $\frac{12}{13} = \alpha$, тогда $\sin \alpha = \frac{12}{13}$. Выразим ctg α через $\sin \alpha$:

$$\operatorname{ctg}\alpha = \frac{\cos\alpha}{\sin\alpha} = \frac{\sqrt{1-\sin^2\alpha}}{\sin\alpha} = \frac{\sqrt{1-\left(\frac{12}{13}\right)^2}}{\frac{12}{13}} = \frac{5}{12}, \ \alpha = \operatorname{arcctg}\frac{5}{12}.$$

42. Пусть
$$\arctan \frac{4}{3} = \alpha$$
, тогда $\tan \alpha = \frac{4}{3}$; $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$, $\sin \alpha = \frac{\pi}{2}$

$$= tg \alpha \cos \alpha = \frac{tg \alpha}{\sec \alpha} = \frac{tg \alpha}{\sqrt{1 + tg^2 \pi}} = \frac{\frac{4}{3}}{\sqrt{1 + \left(\frac{4}{3}\right)^2}} = \frac{\frac{4}{3}}{\frac{5}{3}} = \frac{4}{5}.$$

Отсюда $\alpha = \arcsin \frac{4}{5}$, т. е. $\arctan \frac{4}{3} = \arcsin \frac{4}{5}$.

- 43. Применив тождество $\arcsin x + \arccos x = \frac{\pi}{2}$, получим: $\arccos x = \frac{\pi}{2} \arcsin x$; $\frac{\pi}{2} \arcsin 0, 2 = \arccos 0, 2$.
- 44. См. пример 43.
- 45. Найдем общий промежуток, в котором заключены левая и правая части доказываемого равенства, имеем:

$$0 < \arcsin \frac{9}{41} < \frac{\pi}{2}, 0 < \arccos \frac{4}{5} < \frac{\pi}{2}.$$

Умножив последнее неравенство на (-1), получим:

$$0 > -\arccos\frac{4}{5} > -\frac{\pi}{2}$$
 или $-\frac{\pi}{2} > -\arccos\frac{4}{5} < 0$.

Сложив почленно последнее неравенство с первым,

$$0 < \arcsin \frac{9}{41} < \frac{\pi}{2}$$
 найдем $-\frac{\pi}{2} < -\arccos \frac{4}{5} + \arcsin \frac{9}{41} < \frac{\pi}{2}$. Да-
лее имеем: $0 < \arcsin \frac{84}{205} < \frac{\pi}{2}$, $0 > -\arcsin \frac{84}{205} > -\frac{\pi}{2}$ или $-\frac{\pi}{2} < -\arcsin \frac{84}{205} < 0$.

Итак, обе части неравенства заключены в интервале $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, на котором монотонной является функция $y = \sin x$. Поэтому вычислим синусы левой и правой части равенства. Положив $\arcsin\frac{9}{41} = \alpha$ (откуда $0 < \alpha < \frac{\pi}{2}$, $\sin\alpha = \frac{9}{41}$), $\arccos\frac{4}{5} = \beta$ (откуда $0 < \beta < \frac{\pi}{2}$, $\cos\beta = \frac{4}{5}$), найдем: $\cos\alpha = \sqrt{1-\left(\frac{9}{41}\right)^2} = \frac{40}{41}$, $\sin\beta = \sqrt{1-\left(\frac{4}{5}\right)^2} = \frac{3}{5}$ и $\sin\left(\arcsin\frac{9}{41}-\arccos\frac{4}{5}\right) = \sin\left(\alpha-\beta\right) = \sin\alpha\,\cos\beta - \cos\alpha\,\sin\beta = \frac{9}{41} \cdot \frac{4}{5} - \frac{40}{41} \cdot \frac{3}{5} = \frac{85}{205}$. Далее $\sin\left(-\arcsin\frac{85}{205}\right) = -\sin\left(\arcsin\frac{84}{205}\right) = -\frac{84}{205}$.

46. Находим общий промежуток, в котором заключены левая и правая части доказываемого равенства, имеем: $\frac{1}{2} = \frac{\pi}{3}$,

$$\frac{\pi}{2} < \arccos\left(-\frac{1}{7}\right) < \pi, \ \frac{\pi}{2} < \arccos\left(-\frac{13}{14}\right) < \pi.$$

Прибавим почленно $\frac{\pi}{3}$ ко всем частям первого неравенства:

$$\frac{5}{6}\pi < \arccos\left(-\frac{1}{7}\right) + \frac{\pi}{3} < \frac{4}{3}\pi.$$

Итак, обе части доказываемого неравенства заключены в промежутке $\left(\frac{\pi}{2}, \frac{3}{2}\pi\right)$, на котором монотонной является функция $y = \sin x$. Поэтому вычислим синусы левой и правой частей доказываемого равенства. Обозначьте $\arcsin\left(-\frac{1}{7}\right) = \alpha$.

Тогда
$$\sin\left(\frac{\pi}{3} + \arccos\left(-\frac{1}{7}\right)\right) = \sin\left(\frac{\pi}{3} + \alpha\right) = \sin\frac{\pi}{3}\cos\alpha + \sin\alpha \times \cos\frac{\pi}{3} = \frac{\sqrt{3}}{2}\left(-\frac{1}{7}\right) + \frac{4}{7}\sqrt{3} \cdot \frac{1}{2} = -\frac{\sqrt{3}}{14} + \frac{4\sqrt{3}}{14} = \frac{3\sqrt{3}}{14};$$

$$\sin\left(\arccos\left(-\frac{13}{14}\right)\right) = \sqrt{1-\left(\frac{13}{14}\right)^2} = \sqrt{\frac{196-169}{14^2}} = \frac{3\sqrt{3}}{14}.$$

47. Пусть $\arctan \frac{1}{5} = \alpha$, тогда $\tan \alpha = \frac{1}{5}$, $0 < \alpha < \frac{\pi}{2}$; $\arctan \frac{1}{4} = \beta$, тогда $\tan \beta = \frac{1}{4}$, $0 < \beta < \frac{\pi}{2}$;

$$arctg \frac{32}{43} = \gamma$$
, тогда $tg \gamma = \frac{32}{43}$, $0 < \gamma < \frac{\pi}{2}$.

Определим промежуток, в котором заключена левая часть доказываемого равенства: $2\alpha + \beta$.

Так как $\lg \alpha = \frac{1}{5} < \frac{\sqrt{3}}{3} = \lg \frac{\pi}{6}$ и $\lg \beta = \frac{1}{4} < \frac{\sqrt{3}}{3} = \lg \frac{\pi}{6}$, то $0 < \alpha < \frac{\pi}{6}$ и $0 < \beta < \frac{\pi}{6}$. Отсюда $0 < 2\alpha + \beta < \frac{\pi}{2}$. Кроме того, $0 < \gamma < \frac{\pi}{2}$. Итак, обе части доказываемого равенства заключены в промежутке $\left(0; \frac{\pi}{2}\right)$, на котором монотонной яв-

ляется функция $y = \lg x$. Поэтому вычислим тангенсы от обеих частей этого равенства:

$$tg(2\alpha + \beta) = \frac{tg 2\alpha + tg \beta}{1 - tg 2\alpha tg \beta}; \quad tg 2\alpha = \frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} = \frac{5}{12}.$$

Следовательно,
$$\operatorname{tg}(2\alpha + \beta) = \frac{\frac{5}{12} + \frac{1}{4}}{1 - \frac{5}{12} \cdot \frac{1}{4}} = \frac{32}{43}.$$

Полученный результат сравните с tg γ.

48. Так как $0 < \frac{9}{40} < 1$, то $\arctan 0 < \arctan \frac{9}{40} < \arctan 1$, т. e. $0 < \arctan \frac{9}{40} < \frac{\pi}{4}$.

Так как $\frac{\sqrt[40]}{2} < \frac{4}{5} < 1$, то $\arccos 1 < \arccos \frac{4}{5} < \arccos \frac{\sqrt[4]{2}}{2}$, т. e. $0 < \arccos \frac{4}{5} < \frac{\pi}{4}$.

Сложим полученные неравенства: $0 < \arctan \frac{9}{40} + \arccos \frac{4}{5} < \frac{\pi}{2}$, вычислим $\sin \left(\arctan \frac{9}{40} + \arccos \frac{4}{5}\right)$. Обозначив $\arctan \frac{9}{40} = \alpha$ (тогда

$$\log \alpha = \frac{9}{40}$$
, $0 < \alpha < \frac{\pi}{4}$), $\arccos \frac{4}{5} = \beta \left(\text{тогда } \cos \beta = \frac{4}{5}\right)$, $0 < \beta < \frac{\pi}{4}$), получим:
$$\sin (\alpha + \beta) = \frac{156}{205} = \sin \alpha \cos \beta + \sin \beta \cos \alpha.$$

Далее примените определение арксинуса.

- 49. Имеем: $0 < \arcsin \frac{1}{3} < \frac{\pi}{2}$; $0 < \arcsin \frac{4}{3} < \frac{\pi}{2}$, отсюда $0 < \arcsin \frac{1}{3} + \arcsin \frac{3}{4} < \pi$. Промежуток (0; π) является областью изменения функции $y = \arccos x$, поэтому найдите $\cos \left(\arcsin \frac{1}{3} + \arcsin \frac{3}{4}\right)$. Далее см. пример 34.
- 50. Докажем равенство, равносильное данному: $\arctan 2 + \arctan 3 = \pi \arctan 1 = \frac{3\pi}{4}$. Так как 1 < 2, то $\arctan 1 < \arctan 2$, т. e. $\frac{\pi}{4} < \arctan 2 < \frac{\pi}{2}$.

Аналогично $\frac{\pi}{4} < \arctan 3 < \frac{\pi}{2}$. Сложим полученные неравенства: $\frac{\pi}{2} < \arctan 2 + \arctan 3 < \pi$. На интервале $\frac{\pi}{2}$; π , кото-

рому принадлежит и правая часть доказываемого равенства, монотонной является функция $y = \lg x$. Поэтому найдите тангенсы левой и правой частей равенства.

Найдите тангенс левой части: tg (arctg 2 + arctg 3) =

$$= \frac{\text{tg (arctg 2)} + \text{tg (arctg 3)}}{1 - \text{tg (arctg 2) tg (arctg 3)}} = \frac{2+3}{1-2\cdot 3} = -1.$$

Далее найдите тангенс правой части и сравните результаты.

51.
$$\arcsin\left(\sin\left(-\frac{\pi}{7}\right)\right) = -\frac{\pi}{7}$$
.

52.
$$\arcsin\left(\sin\frac{11}{10}\pi\right) = \arcsin\left(\sin\left(\pi + \frac{\pi}{10}\right)\right) =$$

= $\arcsin\left(-\sin\frac{\pi}{10}\right) = -\arcsin\left(\sin\frac{\pi}{10}\right)$.

53.
$$\arccos\left(\cos\frac{6}{5}\pi\right) = \arccos\left(\cos\left(2\pi - \frac{6}{5}\pi\right)\right) = \arccos\left(\cos\frac{4}{5}\pi\right)$$
.

54. arctg (tg (—3010°)) = arctg (—tg 3010°) = — arctg (tg 3010°) = = —arctg (tg 130°). Далее из 130° вычтите период тангенса.

55.
$$\arcsin\left(\cos\frac{\pi}{9}\right) = \arcsin\left(\sin\left(\frac{\pi}{2} - \frac{\pi}{9}\right)\right) = \arcsin\left(\sin\frac{7\pi}{18}\right)$$
.

57.
$$\arcsin\left(\sin\left(-\frac{\pi}{7}\right)\right) = \arccos\left(\cos\left(\frac{\pi}{2} + \frac{\pi}{7}\right)\right) = \frac{\pi}{2} + \frac{\pi}{7}$$
.

КОНТРОЛЬНОЕ ЗАДАНИЕ

- 1. Верно ли тождество: y'' + 9y = 0, если $y = 2 \sin 3x + 4 \cos 3x$?
- 2. Вычислите предел:

a)
$$\lim_{x \to \frac{\pi}{2}} \cos \left(2x - \frac{\pi}{4}\right)$$
; 6) $\lim_{x \to 0} \frac{\sin \frac{x}{2}}{\sin 2x}$; B) $\lim_{x \to 0} \frac{1 - \cos 2x}{12x^2}$.

- 3. Қакая из функций $y = 3 \sin 2x \cos x + 8$ и $y = -\sin x + \cos \frac{x}{2} 10$ возрастает?
- 4. Напишите уравнение касательной к графику функции $y = \lg 2x$ в точке с абсциссой $\frac{\pi}{6}$.
- 5. Вычислите 2 arctg $\frac{1}{4}$ + arctg $\frac{7}{23}$.

Ответы

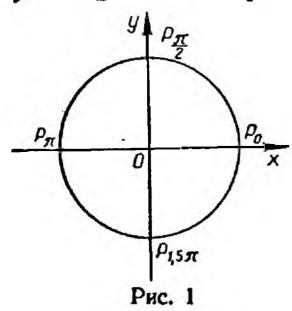
1. Да. 2. а)
$$-\frac{\sqrt{2}}{2}$$
, б) $\frac{1}{4}$, в) $\frac{1}{6}$. 3. Первая. 4. $y = 8x + \sqrt{3} - \frac{4}{3}n$. 5. $\frac{\pi}{4}$.

ЗАДАНИЕ 8

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

Используя свойства функций $y = \sin x$, $y = \cos x$, $y = \lg x$ и y = ctg x, можно решать простейшие тригонометрические уравнения.



а) Решение некоторых тригонометрических уравнений вида f(x) = a, $a = 0; \pm 1$ и f(x) — одна из тригонометрических функций. При выведении мул (8.1)—(8.8) желательно пользоваться единичной окружностью (рис. 1).

$$\sin x = 0 \dots x = \pi k^*$$
 (8.1)

$$\sin x = 1 \dots x = \frac{\pi}{2} + 2\pi k$$
 (8.2)

$$\sin x = -1 \dots x = -\frac{\pi}{2} + 2\pi k$$
 (8.3)

$$\cos x = 0$$
 . . $x = \frac{\pi}{2} + \pi k$ (8.4)

$$\cos x = 1$$
 . $x = 2\pi k$ (8.5)
 $\cos x = -1$. $x = \pi + 2\pi k$ (8.6)
 $\tan x = 0$. $\tan x = \pi k$ (8.7)

$$\cos x = -1$$
 . $x = \pi + 2\pi k$ (8.6)

$$tg x = 0 . . x = \pi k$$
 (8.7)

ctg
$$x = 0 x = \frac{\pi}{2} + \pi k$$
 (8.8)

б) Формулы (8.1)—(8.8) позволяют решать и уравнения вида $\sin kx = a$, $\cos kx = a$, $\cot kx = a$, $\cot kx = a$.

В этом случае везде вместо x нужно писать kx.

в) Решение тригонометрических уравнений, левая и части которых являются одноименными тригонометрическими функциями.

1)
$$\sin f_1(x) = \sin f_2(x)$$
. (8.9)

^{*} Во всех случаях k — любое целое число, т. е. $k \in \mathbb{Z}$.

Уравнение (8.9), где $f_1(x)$ и $f_2(x)$ — некоторые функции от x, равносильно совокупности уравнений:

$$\begin{cases} f_1(x) - f_2(x) = 2\pi k, \\ f_1(x) + f_2(x) = \pi + 2\pi k, \end{cases}$$
(8.10)

где $k \in \mathbb{Z}$ в обоих случаях.

2)
$$\cos f_1(x) = \cos f_2(x)$$
. (8.12)

Уравнение (8.12), где $f_1(x)$ и $f_2(x)$ — некоторые функции от x, равносильно совокупности уравнений:

$$\begin{cases} f_1(x) - f_2(x) = 2\pi k, \\ f_1(x) + f_2(x) = 2\pi k, \end{cases}$$
(8.13)

где $k \in \mathbb{Z}$.

3)
$$\lg f_1(x) = \lg f_2(x)$$
. (8.15)

Уравнение (8.15), где $f_1(x)$ и $f_2(x)$ — некоторые функции от x, равносильно уравнению

$$f_1(x) - f_2(x) = \pi k.$$
 (8.16)
4) $\operatorname{ctg} f_1(x) = \operatorname{ctg} f_2(x).$ (8.17)

Уравнение (8.17), где $f_1(x)$ и $f_2(x)$ — некоторые функции от x, равносильно уравнению

$$f_1(x) - f_2(x) = \pi k.$$
 (8.18)

Для вывода формул (8.10) — (8.18) нужно перенести правые части уравнений (8.9), (8.12), (8.15) и (8.17) в левую, преобразовать полученные разности в произведение, приравнять каждый сомножитель нулю и решить полученные уравнения.

г) Решение тригонометрических уравнений вида:

$$\sin x = a$$
, rge $|a| \le 1$. (8.19)

Уравнение (8.19) равносильно уравнению

$$x = (-1)^k$$
 arcsin $a + \pi k$, где $k \in \mathbb{Z}$. (8.20)

д) Решение тригонометрических уравнений вида:

$$\cos x = a, \text{ rge } |a| \leqslant 1. \tag{8.21}$$

Уравнение (8.21) равносильно уравнению

$$x = \pm \arccos a + 2\pi k$$
, где $k \in \mathbb{Z}$. (8.22)

е) Решение тригонометрических уравнений вида:

$$\operatorname{tg} x = a$$
, где $a \in R$. (8.23)

Уравнение (8.23) равносильно уравнению

$$x = \operatorname{arctg} a + \pi k$$
, где $k \in \mathbb{Z}$. (8.24)

ж) Решение тригонометрических уравнений вида:

$$\operatorname{ctg} x = a, \operatorname{где} a \in R. \tag{8.25}$$

Уравнение (8.25) равносильно уравнению

$$x = \operatorname{arcctg} a + \pi k, \operatorname{rge} k \in \mathbb{Z}. \tag{8.26}$$

з) Решение тригонометрических уравнений вида:

 $f^2(x) = a$, где f(x) — одна из тригонометрических функций. 1) Пусть $\sin^2 x = a$, где $0 \le a \le 1$. (8.27) Общее решение уравнения (8.27) можно записать в виде

$$x = \pm \arcsin \sqrt{a} + \pi k$$
, где $k \in \mathbb{Z}$. (8.28)

2) Пусть $\cos^2 x = a$, где $0 \le a \le 1$, тогда уравнение имеет решение

$$x = \pm \arccos \sqrt{a} + \pi k$$
, где $k \in \mathbb{Z}$. (8.29)

Формулы (8.28) и (8.29) получены в результате решения уравнений

$$\sin x = \pm \sqrt{a} \text{ if } \cos x = \pm \sqrt{a}.$$

Уравнения (8.27) и (8.28) можно решить, также используя формулы $\sin^2 x = \frac{1-\cos 2x}{2}$ и $\cos^2 x = \frac{1+\cos 2x}{2}$. В этом случае вид

корней будет другим, хотя это те же самые корни. При решении тригонометрических уравнений с этим мы часто будем сталкиваться.

3) Пусть $tg^2 x = a$, где $a \geqslant 0$, тогда уравнение имеет решение

$$x = \pm \operatorname{arctg} \sqrt{a} + \pi k$$
, где $k \in \mathbb{Z}$. (8.30)

4) Пусть $ctg^2 x = a$, где $a \ge 0$, тогда уравнение имеет решение

$$x = \pm \operatorname{arcctg} \sqrt{a} + \pi k, \ k \in \mathbb{Z}. \tag{8.31}$$

5) Рассмотрим однородные тригонометрические уравнения относительно синуса или косинуса.

Уравнение $A_0 \sin^n x + A_1 \sin^{n-1} x \cos x + ... + A_n \cos^n x = 0$, (8.32)

однородное относительно $\sin x$ и $\cos x$, n-й степени. Уравнение

$$a\sin x + b\cos x = 0 \tag{8.33}$$

имеет первую степень однородности. Уравнение

$$a \sin^2 x + b \cos x \sin x + k \cos^2 x = 0$$
 (8.34)

имеет вторую степень однородности.

Разделив обе части уравнения (8.32) на $\sin^n x$ или $\cos^n x$, получим уравнение относительно ctg x или tg x.

УПРАЖНЕНИЯ

- 1. Решите уравнение $\cos 2x = 1$.
- 2. Найдите корни функции $y = \sin\left(\frac{3x}{2} \frac{\pi}{10}\right)$.
- 3. Найдите все решения уравнения $tg\left(\frac{\pi}{4}-x\right)=0$.
- 4. Решите уравнение $\sin 3x = \sin x$.
- 5. При каких значениях аргумента функции $y = tg\left(\frac{\pi}{4} x\right)$ и $y = tg \ 2x$ имеют одинаковые значения?
- 6. Найдите все решения уравнения $\cos 3x = \cos 12^{\circ}$. Решите уравнения:

7.
$$\sin(x+1) = \frac{2}{3}$$
. 8. $\tan(x+1) = \frac{2}{3}$. 8. $\tan(x+1) = \frac{2}{3}$. 9. $\cot(x-\frac{\pi}{4}) = \frac{1}{\sqrt{3}}$.

10.
$$\sin^2 2x = \frac{1}{2}$$
. 11. $\operatorname{ctg}^2 \frac{x}{2} = \frac{1}{3}$. 12. $2\cos^2 x - 3\cos x + 1 = 0$.

13.
$$\sin^2 x - \sin x = 0$$
 14. $\frac{2\cos 2x}{1 - \sin 2x} = 0$. 15. $\cos(\cos x) = \frac{\sqrt{3}}{2}$.

16.
$$\sin 3x \cot x = 0$$
. 17. $5 \sin x \cot x - 5 \cot x - 5 \cot x + 1 = 0$.

18.
$$\sin^2 \frac{x}{2} - 2 \cos \frac{x}{2} + 2 = 0$$
. 19. $\sin x + 1.5 \operatorname{ctg} x = 0$.

20.
$$2\cos(6\pi-2x)+4\csc(\frac{\pi}{2}+2x)=9$$
.

21.
$$\frac{\sin{(x-135^\circ)}}{\sin{(x-45^\circ)}} - \frac{\sin{(x-45^\circ)}}{\sin{(x-135^\circ)}} = 2.$$

22.
$$\sin{(\pi-x)} + \cot{\left(\frac{\pi}{2}-x\right)} = \frac{\sec{x}-\cos{x}}{2\sin{x}}$$
.

23.
$$\sin x - \sqrt{3} \cos x = 0$$
.

24.
$$25 \sin^2 x + 30 \sin x \cos x + 9 \cos^2 x = 25$$
.

25.
$$4 \sin^2 x + 7 \cos^2 x + 3 \sin 2x - 6 \cos 2x = 1$$
.

26.
$$\sin^3 x + \cos^3 x = \cos x$$
.

27.
$$\sin x - \sqrt{3} \cos x = 1$$
. 28. $8 \sin x - \cos x = 4$.

29.
$$2\sin x + \cos x = 1$$
. 30. $\sin\left(\frac{7\pi}{4} + x\right) + \sqrt{2}\cos\left(\frac{3\pi}{2} - x\right) = 0$.

31.
$$\cos x \cos 2x = \cos 3x$$
. 32. $1 - \operatorname{tg}\left(\frac{\pi}{4} - x\right) = \frac{2\cos x}{\sin x + \cos x}$.

33.
$$8 \sin x \cos 2x \cos x = \sqrt{3}$$
. 34. $\sin^4 x + \cos^4 x = \frac{5}{8}$.

35.
$$\sec^2 x - \tan^2 x + \cot \left(\frac{\pi}{2} + x\right) = \cos 2x \sec^2 x$$
.

36.
$$\frac{\cos x}{1+\cos x} \cdot \frac{\sin 2x}{1+\cos 2x} = \sqrt{3}$$
. 37. $\lg (3x+45^\circ) - \cos 6x = 0$.

38.
$$\cos^2 x + \cos^2 2x + \cos^2 3x + \cos^2 4x = 2$$
.

39.
$$1 - \sin x = \sin^2\left(\frac{\pi}{4} - \frac{x}{2}\right)$$
.

40.
$$1 + \sin x + \cos x = 2 \cos \left(\frac{x}{2} - 45^{\circ} \right)$$
.

41.
$$1 - \cos^2 2x = \sin 3x - \cos \left(\frac{\pi}{2} + x\right)$$
.

42.
$$\sin\left(x + \frac{\pi}{4}\right) - \sin x = \sin\left(2x + \frac{\pi}{4}\right) - \sin 2x$$
.

43.
$$\cos\left(3x + \frac{\pi}{3}\right) - \cos 3x = \cos\left(x + \frac{\pi}{3}\right) - \cos x$$
.

44.
$$\cos x \sin 3x - \cos 5x \sin 7x = \frac{1}{2} \sin 4x$$
.

45.
$$\sin(x + 30^\circ) \sin(x - 30^\circ) = \frac{1}{4} - \sin^2 x$$
.

46.
$$\sin x \sin 2x \sin 3x = \frac{1}{4} \sin 4x$$
.

47.
$$tg^4 x + ctg^4 x = 8 (tg x + ctg x)^2 - 9$$
.

48.
$$\sin\left(\frac{\pi}{4} + x\right) - \sin\left(\frac{\pi}{4} - x\right) = \frac{\lg 0.5x + \operatorname{ctg} 0.5x}{2\sqrt{2}}$$

49.
$$\frac{\lg 2x}{\lg x} + \frac{\lg x}{\lg 2x} = 2.5$$
. 50. $3 \sin 4x = (\cos 2x - 1) \lg x$.

51.
$$\operatorname{ctg}\left(\frac{\pi}{4}-x\right)=5\operatorname{tg}2x+7$$
. 52. $\frac{1+\sin 3x}{\cos x}=1+2\sin 2x$.

53.
$$\sin 6x + \cos 6x = 1 - 2 \sin 3x$$
. 54. $\cot 2x - \tan 2x = \frac{2}{3} \tan 4x$.

55.
$$4 \sin (x + 60^{\circ}) = 2 \sin (2x + 60^{\circ}) + \sqrt{3}$$
.

56.
$$2 \sin x \sin \frac{x}{2} + \frac{1}{\cos \frac{x}{2}} = 4 \sin \frac{x}{2}$$
. 57. $8 \cos^4 x - \cos 4x = 1$.

58.
$$\sin x + \sin 2x = \cos x + 2 \cos^2 x$$
.

59.
$$(1 + \sec^2 x) \sin 2x \cos 2x \cot 3x = 0$$
. 60. $4^{\sin x} = \sqrt{2}$. $\sin \left(\frac{\pi}{4} - x\right)$

61.
$$1 + 2^{\log x} = 3 \cdot 4^{\sqrt{2} \cos x}$$
. 62. $81^{(\sin 2x - 1) \cos 3x} - 9^{(\sin x - \cos x)^2} = 0$.
63. $3^{\sin 2x + 2 \cos^2 x} + 3^{1 - \sin 2x + 2 \sin^2 x} = 28$.

63.
$$3^{\sin 2x+2\cos^2 x}+3^{1-\sin 2x+2\sin^2 x}=28$$

64.
$$\lg (1 - \cos x) - \lg \sin x = \frac{1}{2} \log_{\sqrt{10}} \sqrt{3}$$
.

65.
$$3 \log_2^2 \sin x + \log_2 (1 - \cos 2x) = 2$$
.

66.
$$\log_2 \sin x - \log_2 \cos x - \log_2 (1 - \lg x) - \log_2 (1 + \lg x) = 1$$

67.
$$\sqrt{1 + \sin x} + \sqrt{1 - \sin x} = 2$$
.

68.
$$\sin x + \cos x - 1 = \sqrt{\sin 2x}$$
. 69. $\sqrt{\lg x} + \sqrt{\operatorname{ctg} x} = 2$.

70.
$$\sin(\pi \lg x) = \cos(\pi \lg x)$$
.

Ответы

1.
$$\{\pi k \mid k \in \mathbb{Z}\}$$
. 2. $\{\frac{\pi}{15}(10k+1) \mid k \in \mathbb{Z}\}$. 3. $\{\frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\}$.

4.
$$\left\{\pi k; \frac{\pi}{4}(2k+1) \mid k \in \mathbb{Z}\right\}$$
. 5. $\left\{\frac{\pi}{12} + \pi k; \frac{5\pi}{12} + \pi k \mid k \in \mathbb{Z}\right\}$.

6.
$$\{\pm 4^{\circ} + 120^{\circ} k \mid k \in \mathbb{Z}\}$$
. 7. $\{(-1)^{k} \arcsin \frac{2}{3} + \pi k - 1 \mid k \in \mathbb{Z}\}$.

8.
$$\left\{-\frac{5\pi}{24} + \frac{\pi k}{2} | k \in \mathbb{Z}\right\}$$
. 9. $\left\{\frac{7\pi}{12} + \pi k | k \in \mathbb{Z}\right\}$. 10. $\left\{\frac{\pi}{8} (4k \pm 1) | k \in \mathbb{Z}\right\}$.

11.
$$\left\{\pm \frac{2}{3}\pi + 2\pi k \mid k \in \mathbb{Z}\right\}$$
. 12. $\left\{2\pi k; \pm \frac{\pi}{3} + 2\pi k \mid k \in \mathbb{Z}\right\}$.

13.
$$\left\{\pi k; \frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z}\right\}$$
. 14. $\left\{\frac{3\pi}{4} + \pi k \mid k \in \mathbb{Z}\right\}$.

15.
$$\left\{ \pm \arccos \frac{\pi}{6} + \pi k \mid k \in \mathbb{Z} \right\}$$
. 16. $\left\{ \frac{\pi}{3} + \pi k; \frac{2}{3} \pi + \pi k; \frac{\pi}{2} + \pi k \mid k \in \mathbb{Z} \right\}$.

17.
$$\left\{\arctan\frac{1}{5} + \pi k \mid k \in \mathbb{Z}\right\}$$
.

18.
$$\{4\pi k \mid k \in \mathbb{Z}\}$$
. 19. $\{\pm \frac{2\pi}{3} + 2\pi k \mid k \in \mathbb{Z}\}$. 20. $\{\pm \frac{\pi}{6} + \pi k \mid k \in \mathbb{Z}\}$.

21.
$$(45^{\circ} + \operatorname{arctg}(1 + \sqrt{2}) + 180^{\circ}k; 45^{\circ} + \operatorname{arctg}(1 - \sqrt{2}) +$$

+ 180°k |
$$k \in \mathbb{Z}$$
 | . 22. $\left\{\pm \frac{2}{3}\pi + 2\pi k \mid k \in \mathbb{Z}\right\}$. 23. $\left\{\frac{\pi}{3} + \pi k \mid k \in \mathbb{Z}\right\}$.

24.
$$\left\{\frac{\pi}{2} + \pi k; \text{ arctg } \frac{8}{15} + \pi k \mid k \in \mathbb{Z}\right\}$$
. 25. $\left\{\hat{\pi}k; -\operatorname{arctg} \frac{2}{3} + \pi k \mid k \in \mathbb{Z}\right\}$.

26.
$$\left\{\pi k; \frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\right\}$$
. 27. $\left\{\frac{\pi}{2} + 2\pi k; \frac{7\pi}{6} + 2\pi k \mid k \in \mathbb{Z}\right\}$.

28.
$$\left\{2 \arctan \frac{1}{3} + 2 \pi k; \ 2 \arctan 5 + 2 \pi k \mid k \in \mathbb{Z}\right\}$$
.

29.
$$\{2\pi k; +2 \operatorname{arctg} 2 + 2\pi k \mid k \in \mathbb{Z}\}$$
. 30. $\{-\frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\}$.

31.
$$\left\{\frac{\pi k}{2} \mid k \in \mathbb{Z}\right\}$$
. 32. $\left\{\frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\right\}$. 33. $\left\{(-1)^k \frac{\pi}{12} + \frac{\pi k}{4} \mid k \in \mathbb{Z}\right\}$.

34.
$$\left\{\pm \frac{\pi}{6} + \frac{\pi k}{2} \middle| k \in \mathbb{Z} \right\}$$
. 35. $\left\{\pi k; \frac{\pi}{4} + \pi k \middle| k \in \mathbb{Z} \right\}$.

36.
$$\left\{\frac{2}{3}\pi + 2\pi k \mid k \in \mathbb{Z}\right\}$$
. 37. $\left\{30^{\circ}k; -15^{\circ} + 60^{\circ}k \mid k \in \mathbb{Z}\right\}$.

38.
$$\left\{\frac{\pi}{2}(2k+1); \frac{\pi}{4}(2k+1); \frac{\pi}{10}(2k+1) \mid k \in \mathbb{Z}\right\}$$
. 39. $\left\{\frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z}\right\}$.

40.
$$\{90^{\circ}+720^{\circ}k; -90^{\circ}+360^{\circ}k \mid k \in \mathbb{Z}\}$$
. 41. $\{\frac{\pi k}{2} \mid k \in \mathbb{Z}\}$.

42.
$$\left\{2\pi k; -\frac{\pi}{12} + \frac{2\pi k}{3} \mid k \in \mathbb{Z}\right\}$$
. 43. $\left\{\pi k; \frac{\pi}{6} (3k+1) \mid k \in \mathbb{Z}\right\}$.

44.
$$\left\{\frac{\pi k}{12} \mid k \in \mathbb{Z}\right\}$$
. 45. $\left\{\pm \frac{\pi}{6} + \pi k \mid k \in \mathbb{Z}\right\}$. 46. $\left\{\frac{\pi k}{2}; \frac{\pi}{8} (2k+1) \mid k \in \mathbb{Z}\right\}$.

47.
$$\left\{\operatorname{arctg} \frac{\sqrt{11} \pm \sqrt{7}}{2} + \pi k; -\operatorname{arctg} \frac{\sqrt{11} \pm \sqrt{7}}{2} + \pi k \mid k \in Z\right\}$$

48.
$$\left\{\frac{\pi}{4}(2k+1) \mid k \in \mathbb{Z}\right\}$$
. 49. \emptyset .

50.
$$\left\{\pi k; \pm \frac{\pi}{3} + \pi k; \pm \arccos \frac{1}{\sqrt{3}} + \pi k \mid k \in \mathbb{Z}\right\}$$
.

51.
$$\left\{\arctan 1, 5 + \pi k; -\arctan \frac{1}{2} + \pi k \mid k \in \mathbb{Z}\right\}$$
. 52. $\left\{2\pi k \mid k \in \mathbb{Z}\right\}$.

53.
$$\left\{\frac{\pi k}{3}; \frac{\pi}{6} + \frac{2\pi k}{3} \mid k \in \mathbb{Z}\right\}$$
. 54. $\left\{\frac{\pi}{12} \left(3k \pm 1\right) \mid k \in \mathbb{Z}\right\}$.

55.
$$\left\{2\pi k; -\frac{\pi}{3} + \pi k \mid k \in \mathbb{Z}\right\}$$
. 56. $\left\{\frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z}\right\}$.

57.
$$\left\{\pm \frac{\pi}{3} + \pi k \mid k \in \mathbb{Z}\right\}$$
. 58. $\left\{\pm \frac{2}{3} \pi + 2\pi k; \frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\right\}$.

59.
$$\left\{\frac{\pi}{4} + \pi k; \frac{3}{4}\pi + \pi k; \frac{\pi}{6} + \pi k; \frac{5\pi}{6} + \pi k \mid k \in \mathbb{Z}\right\}$$
.

60.
$$\{(-1)^k \arcsin \frac{1}{4} + \pi k \mid \in \mathbb{Z}\}$$
. 61. $\{\frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\}$.

62.
$$\left\{\frac{\pi}{4} + \pi k; \frac{2\pi}{9} (3k \pm 1) \mid k \in \mathbb{Z}\right\}$$
. 63. $\left\{\frac{\pi}{2} + \pi k; -\frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\right\}$.

64.
$$\left\{\frac{2}{3}\pi + 2\pi k \mid k \in \mathbb{Z}\right\}$$
. **65.** $\left\{(-1)^k \frac{\pi}{6} + \pi k \mid k \in \mathbb{Z}\right\}$.

66.
$$\left\{\arctan\frac{\sqrt{17}-1}{4}+2\pi k \mid k \in Z\right\}$$
. 67. $\left\{\pi k \mid k \in Z\right\}$.

68.
$$\left\{2\pi k; \frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z}\right\}$$
. **69.** $\left\{\frac{\pi}{4} + \pi k \mid k \in \mathbb{Z}\right\}$.

70.
$$\left\{ \operatorname{asctg} \left(\frac{1}{4} + \pi k \right) + \pi c \right\}$$
, k и c изменяются независимо друг \bar{o} т друга.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- 1. Воспользуйтесь формулой (8.5) и решите полученное уравнение относительно x.
- 2. Приравняйте функцию к нулю и воспользуйтесь формулой (8.1).
- 3. Воспользуйтесь формулой (8.7).
- 4. Воспользуйтесь условиями равенства двух синусов (8.10) и (8.11).
- 5. Приравняв обе функции, примените условие равенства двух тангенсов (8.16).

6. Примените условие равенства двух косинусов (8.13) и (8.14).

7. Примените формулу (8.20).

- 8. Примените формулу (8.24).
- 9. Примените формулу (8.26).
- 10. Примените формулу (8.28).

11. Примените формулу (8.31).

- 12. Решите уравнение относительно $\cos x$ по общей формуле для решения квадратного уравнения, после чего получившуюся совокупность уравнений решите относительно x.
- 13. Решите уравнение относительно $\sin x$.
- 14. Приравняйте числитель к нулю. Учтите, что могли появиться посторонние корни.
- 15. Применив формулу (8.22), выясните, при каких значениях $k | \cos x | \leq 1$.
- 16. При $\sin x \neq 0$ уравнение равносильно совокупности уравнений $\sin 3x = 0$ и ctg x = 0.
- 17. Разложите левую часть уравнения на множители, получите уравнение, равносильное совокупности двух простейших тригонометрических уравнений, при условии существования tg x.
- 18. Выразите $\sin^2 \frac{x}{2}$ через $\cos^2 \frac{x}{2}$.
- 19. Выразив ctg x через cos x и sin x, приведите уравнение к целому виду.
- 20. Воспользуйтесь свойствами периодичности и четности косинуса, а также формулой приведения для косеканса. Далее см. пример 12.
- **21.** Сведите $\sin (x 135^\circ)$ к тригонометрической функции угла $x 45^\circ$.
- **22.** Примените формулу приведения для синуса и котангенса. Выразите $\sec x$ через $\cos x$.
- 23. Обе части уравнения разделите на $\sin x$ или $\cos x$, так как оно однородное.
- **24.** Преобразуйте уравнение к однородному, применив тождество $25 = 25 (\sin^2 x + \cos^2 x)$.
- **25.** Сведите уравнение к однородному, применив формулы удвоения и тождество $1 = \sin^2 x + \cos^2 x$.
- **26.** Перенесите $\cos x$ в левую часть уравнения и, сгруппировав второй и третий члены, вынесите за скобки $\cos x$, после чего уравнение преобразуется к однородному.
- 27. Разделив уравнение почленно на 2, примените теорему сложения.
- 28. Преобразуйте уравнение к однородному.

29. См. пример 28.

- 30. Уменьшите аргумент синуса на 2π, после чего примените формулу для синуса разности и формулу приведения для косинуса.
- 31. Представьте 3x в виде 2x + x, после чего примените формулу для косинуса суммы аргументов.

- 32. Примените формулу для тангенса разности аргументов, а в правой части уравнения числитель и знаменатель дроби разделите на $\cos x$, предварительно убедившись, что значения $x = \frac{\pi}{2} + \pi k$, при которых $\cos x = 0$, не являются корнями уравнения.
- 33. Дважды примените формулу двойного аргумента для синуса.
- **34.** Дополните сумму четвертых степеней до квадрата суммы двух выражений и примените формулу двойного аргумента для синуса.
- 35. Примените формулу приведения для котангенса и тождества

$$\sec^2 x = 1 + \lg^2 x;$$

$$\cos 2x = \frac{1 - \lg^2 x}{1 + \lg^2 x}.$$

- 36. Дважды примените тождество $\frac{\sin \alpha}{1+\cos \alpha}=\lg \frac{\alpha}{2}$.
- 37. Воспользуйтесь тождеством $\lg \frac{\alpha}{2} = \frac{1-\cos \alpha}{\sin \alpha}$.
- 38. Применив формулу понижения степени косинуса, представьте левую часть уравнения в виде произведения.
- 39. Понизьте степень синуса.
- 40. Все тригонометрические функции представьте в виде функций аргумента, $\frac{x}{2}$, для чего используйте формулу двойного аргумента для синуса, формулу сложения для косинуса, а сумму $1 + \cos \alpha$ представьте в виде произведения.
- 41. После применения тождества $1 \cos^2 2x = \sin^2 2x$ и формулы приведения для косинуса преобразуйте сумму синусов в произведение.
- 42. Преобразуйте разность синусов в произведение.
- 43. Разность косинусов преобразуйте в произведения.
- 44. Преобразуйте произведения тригонометрических функций в суммы.
- 45. Преобразуйте произведение синусов в сумму и понизьте степень синуса.
- **46.** Разверните $\sin 4x$ по формуле двойного аргумента.
- 47. Примените подстановку $\lg x + \operatorname{ctg} x = z$. Далее выразите сумму $\lg^4 x + \operatorname{ctg}^4 x$ через z, учитывая, что $\lg x \cdot \operatorname{ctg} x = 1$.
- 48. Преобразуйте разность синусов в произведение. Правую часть уравнения выразите через $tg = \frac{x}{2}$ и примените формулу двойного аргумента.
- 49. Сделайте замену $\frac{\lg 2x}{\lg x} = z$.
- **50.** Данное уравнение сведите к уравнению относительно тригонометрических функций аргумента x.

- **51.** Применив формулу сложения и формулу удвоения, получите уравнение относительно $tg\ x$.
- 52. Освободите уравнение от дробных членов.
- **53.** Сведите уравнение к уравнению относительно тригонометрических функций аргумента 3x.
- 54. Используя формулу удвоения, получите уравнение относительно tg 4x.
- 55. Разделив почленно уравнение на 2, введите вспомогательный угол.
- **56.** Приведя уравнение к целому виду, воспользуйтесь формулами двойного аргумента.
- **57.** Получите уравнение относительно $\cos 2x$, для чего используйте формулу понижения степени косинуса и формулу двойного аргумента косинуса.
- 58. Применив формулу двойного аргумента для синуса, представьте обе части уравнения в виде произведения.
- 59. Примените формулу удвоения для синуса. Далее см. пример 16.
- 60. Представьте обе части уравнения в виде степеней с одинаковыми основаниями.
- **61.** Применив формулу для синуса разности, получите уравнение относительно 2^{tgx} .
- 62. Решите данное показательное уравнение способом приведения к одному и тому же основанию числу 9.
- 63. Применив формулы понижения степени для косинуса и синуса, введите подстановку $3^{\sin 2x + \cos 2x} = y$.
- 64. Приведя логарифмы к общему основанию 10, выполните потенцирование в обеих частях уравнения.
- 65. Используя формулу 1 $\cos 2x = 2 \sin^2 x$, получите уравнение относительно $\log_2 \sin x$.
- **66.** Выполните потенцирование, получите уравнение относительно tg x.
- 67. Введя подстановку $\sin x = y$, сведите исходное уравнение к уравнению, иррациональному относительно у.
- 68. Перенеся і в правую часть уравнения, возведите обе части уравнения в квадрат.
- 69. Выразите ctg x через tg x и введите подстановку y = V tg x.
- 70. Решите уравнение как однородное относительно синуса и косинуса.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

- 1. $2x = 2\pi k \Rightarrow x = \pi k$.
- 2. Приравняв функцию к нулю, получите уравнение: $\sin\left(\frac{3x}{2} \frac{\pi}{10}\right) = 0$. Отсюда $\frac{3x}{2} \frac{\pi}{10} = \pi k$. Далее уравнение решите относительно x.
- 3. По формуле (8.7) $\frac{\pi}{4} x = \pi k$.

- 4. Из условия равенства двух синусов получите равносильную совокупность уравнений $3x x = 2\pi k$ и $3x + x = \pi$ (2k + 1). Далее решите эту совокупность уравнений относительно x.
- 5. Приравняв обе функции, получите уравнение $\lg\left(\frac{\pi}{4}-x\right)=$ = $\lg 2x$. Из условия равенства двух тангенсов получите уравнение $2x-\left(\frac{\pi}{4}-x\right)=\pi k$, откуда $x=\frac{\pi}{12}+\frac{\pi k}{3}$. Но среди этих чисел могут быть и посторонние корни. Действительно, пусть l— частное от деления целого числа k на 3, а σ остаток, тогда $k=3l+\sigma$, где о может принимать значения 0, 1, 2; $x=\frac{\pi}{12}+\frac{\pi\sigma}{3}+\pi l$. При $\sigma=2$ $\lg 2x=\lg\left(\frac{\pi}{6}+\frac{2\pi\sigma}{3}+\frac{2\pi\sigma}{3}+\frac{2\pi l}{3}\right)=\lg\left(\frac{\pi}{6}+\frac{4\pi}{3}\right)=\lg\frac{3\pi}{2}$, т. е. теряет смысл. Далее убедитесь, что при $\sigma=0$ и $\sigma=1$ значения $x=\frac{\pi}{12}+\frac{\pi\sigma}{3}+\frac{\pi\sigma}{3}+\frac{\pi}{3}$ на входят в область определения функции.

6. См. пример 4.

- 7. Примените формулу (8.20). Полученное уравнение решите относительно x.
- 8. По формуле (8.24) получите: $\frac{\pi}{12} + 2x = \arctan(-\sqrt{3}) + \pi k$. Полученное уравнение решите относительно x.

9. См. пример 8.

- 10. По формуле (8.28) получите: $2x = \pm \arcsin \frac{1}{\sqrt{2}} + \pi k$. Полученное уравнение решите относительно x.
- 11. Примените формулу (8.31) и решите полученное уравнение относительно х.
- 12. Решив уравнение как квадратное относительно $\cos x$, придете к совокупности уравнений $\cos x = \frac{1}{2}$ и $\cos x = 1$. Далее примените формулы (8.22) и (8.5), учтите, что $\arccos \frac{1}{2} = \frac{\pi}{3}$.
- 13. Имеем: $\sin x (\sin x 1) = 0$. Полученное уравнение равносильно совокупности уравнений $\sin x = 0$ и $\sin x = 1$. Далее воспользуйтесь формулами (8.1) и (8.2).
- 14. Решите уравнения $2\cos 2x = 0$, $2x = \frac{\pi}{2} + \pi k$, $x = \frac{\pi}{4} + \frac{\pi k}{2}$. Но должно быть $\sin 2x \neq 1$. Проверим, нет ли среди найденных чисел таких, что $\sin 2x = 1$. Пусть l частное от деления целого числа k на 2, а σ остаток, тогда $x = \frac{\pi}{4} + \pi l + \frac{\pi \sigma}{2}$. При $\sigma = 0 \sin 2x = 1$. При $\sigma = 1 \sin 2x = -1$. Из множества $x = \frac{\pi}{4} + \frac{\pi k}{2}$ исключите посторонние корни.

- 15. Имеем: $\cos x = \pm \frac{\pi}{6} + 2\pi k$. Но $|\cos x| \le 1$ лишь при k = 0, отсюда получается совокупность уравнений $\cos x = \pm \frac{\pi}{6}$, равносильных одному уравнению $\cos^2 x = \frac{\pi^2}{36}$. Далее примените формулу (8.29).
- 16. Значения x может принимать такие, при которых $\operatorname{ctg} x$ имеет смысл. Решая совокупность уравнений $\sin 3x = 0$, $\operatorname{ctg} x = 0$, получите: $x_1 = \frac{\pi k}{3}$; $x_2 = \frac{\pi}{2} + \pi k$. Среди этих чисел могут быть посторонние корни. Проверим это: $x_1 = \frac{\pi}{3} \, \sigma + \pi l$, где l и σ частное и остаток при делении k на 3, причем σ может принимать значения 0, 1, 2. При σ = 0 теряет смысл $\operatorname{ctg} x_1$. Далее убедитесь, что $\operatorname{ctg} x_1$ при σ = 1 и σ = 2 имеет смысл.
- 17. После разложения левой части на множители уравнение примет вид (5 tg x-1) (sin x-1) = 0, поэтому tg $x=\frac{1}{5}$ и sin x=1, откуда $x_1=\arctan \frac{1}{5}+\pi k$; $x_2=\frac{\pi}{2}+\pi k$. Далее убедитесь, что $x_2=\frac{\pi}{2}+\pi k$ —посторонние корни.
- 18. Так как $\sin^2\frac{x}{2}=1-\cos^2\frac{x}{2}$, то уравнение принимает вид $\cos^2\frac{x}{2}+2\cos\frac{x}{2}-3=0$. Решив это квадратное уравнение относительно $\cos\frac{x}{2}$, получите равносильную совокупность уравнений $\cos\frac{x}{2}=1$ и $\cos\frac{x}{2}=-3$.
- 19. Применив тождество $\cot x = \frac{\cos x}{\sin x}$, получите уравнение $\sin x + \frac{3\cos x}{2\sin x} = 0$ или $2\sin^2 x + 3\cos x = 0$. Далее см. пример 18.
- 20. Исходное уравнение равносильно уравнению $2\cos 2x + 4\sec 2x = 9$, если $\cos 2x \neq 0$. Уравнение запишите в виде $2\cos 2x + \frac{4}{\cos 2x} = 9$ или $2\cos^2 2x 9\cos 2x + 4 = 0$. Далее см. пример 12.
- 21. После применения формул приведения исходное уравнение преобразуется к виду:

$$-\frac{\cos{(x-45^\circ)}}{\sin{(x-45^\circ)}} + \frac{\sin{(x-45^\circ)}}{\cos{(x-45^\circ)}} = 2;$$

откуда следует, что

$$\begin{cases} \sin(x - 45^{\circ}) \neq 0, \\ \cos(x - 45^{\circ}) \neq 0. \end{cases}$$
 (*)

Дальнейшими преобразованиями приведите к уравнению

$$-\frac{1}{\lg(x-45^\circ)} + \lg(x-45^\circ) = 2.$$

Решите это уравнение относительно tg ($x-45^\circ$), получите равносильную совокупность уравнений tg ($x-45^\circ$) = $1+\sqrt{2}$ и tg ($x-45^\circ$) = $1-\sqrt{2}$. Все полученные корни удовлетворяют (*), следовательно, не посторонние.

22. Уравнение преобразуйте к виду $\sin x + \lg x = \frac{1-\cos^2 x}{2\sin x\cos x}$. Отсюда ясно, что $\sin x \neq 0$, $\cos x \neq 0$ и $2\cos x + 1 = 0$. После упрощений получите: $\sin x + \lg x = \frac{1}{2}\lg x$, $2\sin x + \lg x = 0$, $\lg x = 0$, $\lg x = 0$, $\lg x = 0$. Нетрудно убедиться, что $\lg x = \pi \ell$ — посторонние корни.

23. Разделив уравнение почленно на $\cos x$, получите равносильное уравнение $\lg x - \sqrt{3} = 0$. Далее см. пример 8.

24. Уравнение можно записать в виде $25 \sin^2 x + 30 \sin x \cos x + 9 \cos^2 x = 25 \sin^2 x + 25 \cos^2 x$ или $\cos x$ (15 $\sin x - 8 \cos x$) = 0, после чего получите равносильную совокупность уравнений $\cos x = 0$ и $15 \sin x - 8 \cos x = 0$. Далее см. пример 23.

25. См. пример 24.

- **26.** Уравнение преобразуется к виду $\sin^3 x \cos x \sin^2 x = 0$ или $\sin^2 x (\sin x \cos x) = 0$. Далее см. пример 24.
- 27. После почленного деления уравнения на 2 получите:

$$\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x = \frac{1}{2}$$
 или $\sin\left(x - \frac{\pi}{3}\right) = \frac{1}{2}$. Далее см. пример 7.

28. Применив формулы удвоения и тождество $\sin^2\frac{x}{2} + \cos^2\frac{x}{2} = 1$, преобразуйте уравнение к однородному:

$$8 \cdot 2 \sin \frac{x}{2} \cos \frac{x}{2} - \left(\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\right) = 4\left(\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}\right).$$
 Решив уравнение как однородное, получите равносильную совокупность уравнений: $tg\frac{x}{2} = \frac{1}{3}$, $tg\frac{x}{2} = 5$.

29. См. пример 28.

- 30. Преобразуйте уравнение: $\sin\left(x-\frac{\pi}{4}\right)-\sqrt{2}\sin x=0$, $\sin x \times \cos\frac{\pi}{4}-\cos x\sin\frac{\pi}{4}-\sqrt{2}\sin x=0$, после чего получите однородное уравнение $\sin x + \cos x=0$. Далее см. пример 23.
- 31. Запишите уравнение в виде $\cos x \cos 2x = \cos x \cos 2x \sin x \times \sin 2x$ или $\sin x \sin 2x = 0$, после чего получите равносильную совокупность уравнений $\sin x = 0$ и $\sin 2x = 0$.

32. Исходное уравнение равносильно уравнению
$$1 - tg\left(\frac{\pi}{4} - x\right) = \frac{2}{1 + tg \ x}$$
 при условии: $tg\left(\frac{\pi}{4} - x\right)$ имеет смысл и $tg \ x \neq -1$. После применения формул сложения придете к уравнению $1 - \frac{1 - tg \ x}{1 + tg \ x} = \frac{2}{1 + tg \ x}$ или $tg \ x = 1$. Далее убедитесь, что по-

сторонних корней нет.

33. Применив формулу двойного аргумента для синуса, получите: $4 \sin 2x \cos 2x = \sqrt{3}$ или $2 \sin 4x = \sqrt{3}$.

34. Уравнение преобразуйте к виду: $\sin^4 x + 2 \sin^2 x \cos^2 x + \cos^4 x = \frac{5}{8} + 2 \sin^2 x \cos^2 x$; $1 = \frac{5}{8} + \frac{1}{2} \sin^2 2x$.

Отсюда получите простейшее уравнение $\sin^2 2x = \frac{3}{4}$. Далее см. пример 10.

35. Оно равносильно уравнению $1 - tg x = \frac{1 - tg^2 x}{1 + tg^2 x} (1 + tg^2 x)$

или $\operatorname{tg} x (\operatorname{tg} x - 1) = 0$. Отсюда получается равносильная совокупность уравнений: $\operatorname{tg} x = 0$ и $\operatorname{tg} x = 1$. При таких значениях $\operatorname{tg} x$ все функции в уравнении существуют. Следовательно, посторонних корней нет.

36. Должно быть: $\begin{cases} \cos x \neq -1, \\ \cos 2x \neq -1. \end{cases}$

Применяя тождество $\frac{\sin \alpha}{1 + \cos \alpha} = \text{tg} \frac{\alpha}{2}$, получите $\frac{\cos x}{1 + \cos x} \cdot \text{tg } x = \sqrt{3}$; $\frac{\sin x}{1 + \cos x} = \sqrt{3}$; $\frac{\sin x}{1 + \cos x} = \sqrt{3}$; $\frac{\sin x}{1 + \cos x} = \sqrt{3}$.

Далее см. пример 8.

При найденных значениях x условия $\cos x \neq -1$ и $\cos 2x \neq -1$ выполняются, следовательно, посторонних корней нет.

37. Примените тождественные преобразования:

$$\frac{1-\cos{(6x+90^\circ)}}{\sin{(6x+90^\circ)}}-\cos{6x}=0, \ \frac{1+\sin{6x}}{\cos{6x}}-\cos{6x}=0.$$

Далее приведите уравнение к целому виду и после применения тождества $\cos^2 6x = 1 - \sin^2 6x$ придете к уравнению $\sin 6x (1 + \sin 6x) = 0$, равносильному совокупности уравнений $\sin 6x = 0$ и $\sin 6x = -1$. Убедитесь, что посторонних корней нет.

38. Проведите следующие преобразования:

$$\frac{1+\cos 2x}{2} + \frac{1+\cos 4x}{2} + \frac{1+\cos 6x}{2} + \frac{1+\cos 8x}{2} = 2,$$

$$\cos 2x + \cos 4x + \cos 6x + \cos 8x = 0,$$

$$2\cos 3x\cos x + 2\cos 7x\cos x = 0.$$

Далее сов х вынесите за скобки и, снова применив формулу для преобразования суммы косинусов в произведение, придете к равносильной совокупности уравнений:

$$\cos x = 0$$
; $\cos 2x = 0$, $\cos 5x = 0$.

39. После понижения степени синуса получите уравнение:

$$1 - \sin x = \frac{1 - \cos\left(\frac{\pi}{2} - x\right)}{2}$$
 или $\sin x = 1$.

40. Уравнение преобразуется к виду:

$$2\cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2} = 2\left(\frac{1}{\sqrt{2}}\cos\frac{x}{2} + \frac{1}{\sqrt{2}}\sin\frac{x}{2}\right)$$
или $\cos\frac{x}{2}\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right) = \frac{1}{\sqrt{2}}\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)$,

что равносильно совокупности уравнения $\sin\frac{x}{2} + \cos\frac{x}{2} = 0$ и $\cos\frac{x}{2} = \frac{1}{\sqrt{2}}$. Далее см. пример 23. Учтите, что множество $360^{\circ}k$ включает в себя множество $720^{\circ}k$, так как $720^{\circ}k = 360^{\circ} 2k$.

41. Преобразовав уравнение к виду: $\sin^2 2x = \sin 3x + \sin x$ или $\sin^2 2x = 2 \sin 2x \cos x$, получите равносильную совокупность уравнений $\sin 2x = 0$, $\cos x = 0$, $\sin x = 1$.

Учтите, что множество $\frac{\pi k}{2}$ содержит в себе множества $\frac{\pi}{2}(2k+1)$ и $\frac{\pi}{2}(4k+1)$.

42. Преобразовав разности синусов в произведения, получите:

$$2\cos\left(x+\frac{\pi}{8}\right)\sin\frac{\pi}{8}=2\cos\left(2x+\frac{\pi}{8}\right)\sin\frac{\pi}{8}$$

или $\cos\left(2x+\frac{\pi}{8}\right)=\cos\left(x+\frac{\pi}{8}\right)$. Далее см. пример 6.

43. Преобразовав разности косинусов в произведения, получите:

$$-2\sin\left(3x+\frac{\pi}{6}\right)\sin\frac{\pi}{6}=-2\sin\left(x+\frac{\pi}{6}\right)\sin\frac{\pi}{6}$$

или $\sin\left(3x+\frac{\pi}{6}\right)=\sin\left(x+\frac{\pi}{6}\right)$. Далее см. пример 4.

44. Преобразовав произведения синуса на косинус в суммы, будете иметь:

$$\frac{1}{2}(\sin 4x + \sin 2x) - \frac{1}{2}(\sin 12x + \sin 2x) = \frac{1}{2}\sin 4x$$

или sin 12x = 0.

- 45. Преобразуйте уравнение к виду: $\frac{\cos 60^{\circ} \cos 2x}{2} = \frac{1}{4} \frac{1 \cos 2}{2}$ или $\cos 2x = \frac{1}{2}$.
- 46. После применения тождества $\sin 4x = 2 \sin 2x \cos 2x$ становится ясным, что уравнение равносильно совокупности уравнений $\sin 2x = 0$ и $\sin x \sin 3x = \frac{1}{2} \cos 2x$. Для решения второго уравнения произведение синусов преобразуйте в сумму, после чего получите уравнение $\cos 4x = 0$.
- 47. Принимать может x только те значения, при которых $\lg x$ и $\operatorname{ctg} x$ имеют смысл. Приняв во внимание, что $\operatorname{tg}^2 x + 2\operatorname{ctg} x \times \operatorname{xg} x + \operatorname{ctg}^2 x = z^2$, $\operatorname{tg}^2 x + \operatorname{ctg}^2 x = z^2 2$, $\operatorname{tg}^4 x + \operatorname{ctg}^4 x = (z^2 2)^2 2$; придете к биквадратному уравнению $z^4 12z^2 + 11 = 0$, откуда имеем: $\operatorname{tg} x + \operatorname{ctg} x = \pm 1$ и $\operatorname{tg} x + \operatorname{ctg} x = \pm 1$. Далее установите, что вторая пара уравнений решений не имеет, а первая сводится к совокупности уравнений

Учтите, что если $\lg x \neq 0$, то $\operatorname{ctg} x$ имеет смысл, поэтому посторонних корней нет.

48. Принимать может x только те значения, для которых $\sin\frac{x}{2} \neq 0$ и $\cos\frac{x}{2} \neq 0$, τ . е. $\sin x \neq 0$ (так как $\sin x = 2 \sin\frac{x}{2} \cos\frac{x}{2}$). Преобразуйте уравнение следующим образом: $2 \cos\frac{\pi}{4} \sin x = 0$

$$= \frac{1}{\sqrt{2}} \cdot \frac{1 + \lg^2 \frac{x}{2}}{2 \lg \frac{x}{2}}, \sqrt{2} \sin x = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sin x}, \quad 2 \sin^2 x = 1, \quad \text{откуда}$$

 $\cos 2x = 0$. Убедитесь, что если $\cos 2x = 0$, то $\sin x \neq 0$, т. е. посторонних корней нет.

49. Принимать может x только те значения, при которых $\lg x$ и $\lg 2x$ имеют смысл, причем $\lg x \neq 0$. Применив подстановку $\frac{\lg 2x}{\lg x} = z$ и решив уравнение $z + \frac{1}{z} = 2 + \frac{1}{2}$, получите равносильную совокупность уравнений $\frac{\lg 2x}{\lg x} = 2$ и $\frac{\lg 2x}{\lg x} = \frac{1}{2}$. После применения формулы удвоения и сокращения дробей будете иметь: $\frac{2}{1-\lg^2 x} = 2$ и $\frac{2}{1-\lg^2 x} = \frac{1}{2}$ или $\lg x = 0$. Но по условию $\lg x \neq 0$, следовательно, корней нет.

50. Принимать может x только те значения, при которых имеет смысл $\lg x$. После применения формул двойного аргумента придете κ уравнению $6 \sin x \cos^2 x (2 \cos^2 x - 1) = -\sin x (1 - \cos^2 x)$, равносильному совокупности уравнений $\sin x = 0$ и $6 \cos^2 x (2 \cos^2 x - 1) = -(1 - \cos^2 x)$. После упрощений второе уравнение приведете κ биквадратному

$$12\cos^4 x - 7\cos^2 x + 1 = 0,$$

откуда исходное уравнение равносильно совокупности уравнений $\sin x = 0$, $\cos^2 x = \frac{1}{4}$, $\cos^2 x = \frac{1}{3}$.

При всех таких x tg x имеет смысл, поэтому посторонних корней нет.

51. Приведите уравнение к виду $\frac{1+\operatorname{tg} x}{1-\operatorname{tg} x}=5\frac{2\operatorname{tg} x}{1-\operatorname{tg}^2 x}+7$ или $4\operatorname{tg}^2 x-4\operatorname{tg} x-3=0$, откуда получите совокупность уравнений $\operatorname{tg} x=-\frac{1}{2}$ и $\operatorname{tg} x=\frac{3}{2}$. Необходимо выяснить, не произошла ли в процессе решения уравнения при применении тождества $\operatorname{ctg}\left(\frac{\pi}{4}-4\right)=\frac{1}{\operatorname{tg}\left(\frac{\pi}{4}-x\right)}=\frac{1+\operatorname{tg} x}{1-\operatorname{tg} x}$ потеря корней ви-

да $x = \frac{\pi}{2} + \pi k$, при которых теряет смысл tg x.

52. Должно быть $\cos x \neq 0$.

Преобразуйте уравнение $1 + \sin 3x = \cos x + 2 \sin 2x \cos x$, $1 + \sin 3x = \cos x + \sin 3x + \sin x$. Получите: $\sin x + \cos x = 1$. Далее разделите уравнение почленно на $\sqrt{2}$. Убедитесь, что множество $x = \frac{\pi}{2} + 2\pi k$ дает $\cos x = 0$, поэтому это посторонние корни.

- 53. Перепишите уравнение в виде $2 \sin 3x \cos 3x + 2 \sin 3x = 1 \cos 6x$ или $2 \sin 3x (1 + \cos 3x) = 2 \sin^2 3x$, откуда следует, что оно равносильно совокупности уравнений $\sin 3x = 0$ и $\sin 3x \cos 3x = 1$.
- 54. Должно быть $\sin 2x \neq 0$, $\cos 2x \neq 0$, $\cos 4x \neq 0$, или, что то же самое, $\sin 4x \neq 0$, $\cos 4x \neq 0$ (см. пример 48). Упростите уравнение $\frac{1}{\lg 2x} \lg 2x = \frac{2}{3} \lg 4x$; $\frac{1 \lg^2 2x}{2 \lg 2x} = \frac{1}{3} \lg 4x$; $\frac{1}{\lg 4x} = \frac{1}{3} \lg 4x$

 $=\frac{1}{3}$ tg 4x, откуда tg² 4x = 3. Учтите, что если tg $\alpha \neq 0$ и определен, то $\sin \alpha \neq 0$ и $\cos \alpha \neq 0$, поэтому посторонних

корней не появилось.

55. После почленного деления на 2 данное уравнение принимает вид $2 \sin (x + 60^\circ) = \sin (2x + 60^\circ) + \sin 60^\circ$ или $2 \sin (x + 60^\circ) = 2 \sin (x + 60^\circ) = \cos x$, т. е. оно равносильно совокупности уравнений $\sin (x + 60^\circ) = 0$ и $\cos x = 1$.

- 56. Должно быть $\cos \frac{x}{2} \neq 0$. Освободившись в уравнении от дробных членов и применив формулу двойного аргумента для синуса, запишите уравнение в виде $\sin^2 x + 1 = 2 \sin x$, откуда $(\sin x 1)^2 = 0$, $\sin x = 1$. Учтите, что при $\sin x \neq 0$, $\cos \frac{x}{2} \neq 0$, так как $\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$.
- 57. Преобразуйте уравнение следующим образом: $2(1 + \cos 2x)^2 (2\cos^2 2x 1) = 1.$

После упрощения придете к уравнению $\cos 2x = -\frac{1}{2}$.

- 58. После применения формулы двойного аргумента для синуса и разложения обеих частей уравнений на множители получите $\sin x (1 + 2 \cos x) = \cos x (1 + 2 \cos x)$, т. е. исходное уравнение равносильно совокупности уравнений $1 + 2 \cos x = 0$ и $\sin x = \cos x$. Далее см. пример 23.
- **59.** Принимать x может только те значения, для которых $\cos x \neq 0$ и $\sin 3x \neq 0$. Запишите уравнение в виде

$$\frac{1}{2} (1 + \sec^2 x) \sin 4x \operatorname{ctg} 3x = 0.$$

Так как $1 + \sec^2 x \neq 0$, то $\sin 4x = 0$ и ctg 3x = 0, откуда $x_1 = \frac{\pi k}{4}$, $x_2 = \frac{\pi}{6} + \frac{\pi k}{3}k \in \mathbb{Z}$.

Представив k в виде $k = 4l + \sigma$, а n в виде $n = 3s + \tau$, рассмотрите случаи $\sigma = 0$, 1, 2, 3 и $\tau = 0$, 1, 2. Убедитесь, что при $\sigma = 0$; 2 и $\tau = 1$ будут посторонние корни.

- 60. Уравняв основания степеней в обеих частях, получите: $2^{\sin x} = 2^{\frac{1}{2}}$, отсюда $2\sin x = \frac{1}{2}$.
- 61. Принимать x может только те значения, при которых tg x имеет смысл. После применения формулы для синуса разности уравне-

ние принимает вид: $1+2^{\lg x}=3\cdot 2^{\frac{1}{\sqrt{2}}\cos x}$. Произведя упрощения, получите уравнение $1+2^{\lg x}=3\cdot 2^{\frac{1-\lg x}{2}}$ или $1+2^{\lg x}=\frac{6}{2^{\lg x}}$.

Введя подстановку $2^{\lg x} = y$ (y > 0), придете к уравнению $y^2 + y - 6 = 0$. Найдя у и учитывая, что y > 0, решите уравнение $2^{\lg x} = 2$, равносильное уравнению $\lg x = 1$.

62. Записав уравнение в виде $9^{2(\sin 2x-1)\cos 3x} = 9^{(\sin x-\cos x)^2}$, получите уравнение $2 (\sin 2x-1)\cos 3x = 1 - \sin 2x$, равносильное совокупности уравнений $1 - \sin 2x = 0$ и $-2\cos 3x = 1$.

63. Применение формул понижения степеней дает уравнение $3^{1+\sin 2x+\cos 2x}+3^{2-(\sin 2x+\cos 2x)}=28$

или $3 \cdot 3^{\sin 2x + \cos 2x} + \frac{9}{3^{\sin 2x + \cos 2x}} = 28$, которое с помощью подстановки $3^{\sin 2x + \cos 2x} = y$ (y > 0) приводится к уравнению $3y + \frac{9}{y} = 28$ или $3y^2 - 28y + 9 = 0$. Отсюда получите совокупность уравнений $\sin 2x + \cos 2x = 2$ и $\sin 2x + \cos 2x = -1$. Первое уравнение решения не имеет, так как $\sin 2x$ и $\cos 2x$ одновременно не могут обратиться в единицу. Для решения второго уравнения см. пример 52.

64. Принимать ж может только те значения, при которых

$$\begin{cases} \sin x > 0, \\ 1 - \cos x > 0, \end{cases} \Leftrightarrow \begin{cases} \sin x > 0, \\ \cos x < 1. \end{cases}$$

Выполните преобразования: $\lg \frac{1-\cos x}{\sin x} = \frac{1}{2} \lg 3$,

$$\lg \frac{1-\cos x}{\sin x} - \lg \sqrt{3}.$$

Отсюда получите уравнение $\frac{1-\cos x}{\sin x} = \sqrt{3}$.

В левой части перейдите к $\lg \frac{x}{2}$: $\lg \frac{x}{2} = \sqrt{3}$.

Решив это уравнение, следует убедиться, что для найденных корней $\sin x > 0$, а $\cos x < 1$.

65. Принимать х может только те значения, при которых

$$\begin{cases} \sin x > 0, \\ 1 - \cos 2x > 0, \end{cases} \Leftrightarrow \begin{cases} \sin x > 0, \\ 2\sin^2 x > 0, \end{cases} \Leftrightarrow \sin x > 0.$$

После несложных преобразований получите: $3 \log_2^2 \sin x + \log_2 (2 \sin^2 x) = 2$, $3 \log_2^2 \sin x + 2 \log_2 \sin x - 1 = 0$.

Введя подстановку $\log_2 \sin x = y$, получите уравнение $3y^2 + 2y - 1 = 0$. Решив его, придете к совокупности уравнений $\log_2 \sin x = -1$ и $\log_2 \sin x = \frac{1}{3}$ или $\sin x = \frac{1}{2}$ и $\sin x = \frac{1}{3}$

 $= \sqrt[3]{2}$, из которых решение имеет только первое уравнение. При проверке корней обратите внимание на то, что при sin $x = \frac{1}{2}$, sin x > 0.

66. Принимать x может только те значения, для которых $\sin x > 0$, $\cos x > 0$, $-1 < \operatorname{tg} x < 1$, или, что то же самое, $\sin x > 0$, $0 < \operatorname{tg} x < 1$.

После несложных преобразований получите:

$$\log_2 \frac{\lg x}{1 - \lg^2 x} = 1 \quad \text{или} \quad \frac{\lg x}{1 - \lg^2 x} = 2.$$

Решение полученного квадратного уравнения приведет к простейшему тригонометрическому уравнению $\operatorname{tg} x = \frac{\sqrt{17}-1}{4}$ (мы

учли здесь, что должно быть $\lg x > 0$). Применив формулу (8.24), рассмотрите случаи k = 2l и k = 2l + 1. Убедитесь, что при k = 2l + 1 корни посторонние, ибо должно быть $\sin x > 0$.

- 67. Запишите уравнение в виде: $\sqrt{1+y}+\sqrt{1-y}=2$, где $y=\sin x$. Возведя обе части уравнения в квадрат, найдите $2+2\sqrt{1-y^2}=4$, $\sqrt{1-y^2}=1$. Отсюда $1-y^2=1$. В конечном итоге придете к уравнению $\sin x=0$. Учтите, что если обе части уравнения неотрицательны, то при возведении их в квадрат получается равносильное уравнение. Поэтому посторонние корни не появятся.
- 68. Принимать x может только те значения, для которых $\sin 2x \ge 0$. Запишите уравнение в виде $\sin x + \cos x = 1 + \sqrt{\sin 2x}$ и возведите обе части уравнения в квадрат. Получите $\sin^2 x + 2 \sin x \cos x + \cos^2 x = 1 + 2\sqrt{\sin 2x} + \sin 2x$, откуда $\sqrt{\sin 2x} = 0 \Rightarrow \sin 2x = 0$, $x = \frac{\pi k}{2}$.

При возведении обеих частей уравнения в квадрат могут появиться посторонние корни. Поэтому надо выяснить, нет ли в множестве $x=\frac{\pi k}{2}$ посторонних корней. Для этого представьте число k в виде $k=4l+\sigma$, где σ может принимать одно из значений 0, 1, 2, 3. Далее подстановкой в исходное уравнение убедитесь, что уравнению удовлетворяют лишь значения x при $\sigma=0$ и $\sigma=1$.

69. Система $\begin{cases} tg \ x > 0 \\ ctg \ x > 0 \end{cases}$ должна быть

равносильна одному неравенству $tg \, x > 0$ (предполагается, что $tg \, x$ определен). Записав уравнение в виде

$$\sqrt{\overline{\lg x}} + \frac{1}{\sqrt{\overline{\lg x}}} = 2,$$

примените подстановку $y = V \overline{\lg x}$. Решив уравнение $y + \frac{1}{y} = 2$,

найдите y = 1, откуда $V t \overline{g x} = 1$.

70. Принимать x может только те значения, при которых имеет смысл $\lg x$. Разделив уравнение почленно на $\cos (\pi \lg x)$, найдите $\lg (\pi \lg x) = 1$, откуда $\pi \lg x = \frac{\pi}{4} + \pi k$, $\lg x = \frac{1}{4} + k$. Решите полученное уравнение.

КОНТРОЛЬНОЕ ЗАДАНИЕ

Решите уравнения:

1. $\sin 2x \sec 3x = 1$. 2. $\tan 5x = \tan 3x$.

3. $2 \lg x \cos x - 2 \cos x + 1 - \lg x = 0$.

4. $3 \sin x - 4 \cos x = 4$.

5. $(1 - \lg x) (1 + \sin 2x) = 1 + \lg x$.

6. $\sin 8x = \cos 3x (\sin x + \sin 7x)$.

7.
$$\cos^2 \frac{2x}{3} = \frac{1 + \cos^2 x}{2}$$
. 8. $\sin^4 x + \sin^4 \left(x + \frac{\pi}{4}\right) = \frac{1}{4}$.

9. $\sin 7x - \sin x = 1 - 2 \cos^2 2x$.

10. $8 \cos x = \sec x + \sqrt{3} \csc x$.

11. $\operatorname{ctg} 2^x = \operatorname{tg} 2^x + 2 \operatorname{tg} 2^{x+1}$.

12. Найдите все значения p, при которых имеет решение уравнение $\cos x + \sqrt{1+p} \cdot \sin x = 1 + \sqrt{1-p}$.

Ответы

1.
$$\left\{\frac{\pi}{10}(4k+1), \ k \neq 5a+1, \ a \in \mathbb{Z}\right\}$$
. 2. $\{\pi k \mid k \in \mathbb{Z}\}$.

3.
$$\left\{\frac{\pi}{4} + \pi k; \pm \frac{\pi}{3} + 2\pi k \mid k \in \mathbb{Z}\right\}$$
.

4.
$$\{\pi + 2\pi k; 2 \arctan \frac{4}{3} + 2\pi k \mid k \in \mathbb{Z}\}.$$

5.
$$\left\{\pi k - \frac{\pi}{4}; \ \pi k \mid k \in \mathbb{Z}\right\}$$
. 6. $\left\{\frac{\pi k}{4}; \ \pm \frac{\pi}{12} + \frac{\pi k}{2}\right\}$.

7.
$$\{\pm : \frac{\pi}{4} + \frac{3}{2} \pi k \mid k \in \mathbb{Z} \}$$
. 8. $\{\pi k - \frac{\pi}{4}; \pi k \mid k \in \mathbb{Z} \}$.

9.
$$\left\{\frac{\pi}{8} + \frac{\pi k}{4}; (-1)^{k+1} \frac{\pi}{18} + \frac{\pi k}{3} \mid k \in \mathbb{Z}\right\}$$
.

10.
$$\left\{\frac{\pi}{3} + \pi k; \frac{\pi}{12} + \frac{\pi k}{2} \middle| k \in \mathbb{Z}\right\}$$
.

11.
$$\left\{\log_2\left(\frac{\pi}{8} + \frac{\pi k}{2}\right) \middle| k \in \mathbb{O}, 1, 2 \dots; \log_2\left(-\frac{\pi}{8} + \frac{\pi k}{2}\right) \middle| k \in \mathbb{N}\right\}.$$

12.
$$\left[\frac{\sqrt{5}-1}{2}; 1\right]$$
.

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. ПЕРВООБРАЗНАЯ

Определение. Функция F(x) называется первообразной для функции f(x) на заданном промежутке, если для всех x из этого промежутка F'(x) = f(x).

Три правила нахождения первообразных.

1. Если F(x) есть первообразная для f(x), а G(x) первообразная для g(x), то F(x) + G(x) есть первообразная для f(x) + g(x).

2. Если F(x) первообразная для f(x), а k — постоянная, то

kF(x) есть первообразная для kf(x).

3. Если F'(x) есть первообразная для функции f(x), а $k \neq 0$ и b — постоянные, то $\frac{1}{k}F(kx+b)$ есть первообразная для функции f(kx+b).

Таблица первообразных для тригонометрических функций.

$$f(x) = \sin x; F(x) = -\cos x + C;$$

$$f(x) = \cos x; F(x) = \sin x + C;$$
(9.1)
(9.2)

$$f(x) = \frac{1}{\cos^2 x}$$
; $F(x) = \lg x + C$; (9.3)

$$f(x) = -\frac{1}{\sin^2 x}$$
; $F(x) = \operatorname{ctg} x + C$. (9.4)

§ 2. UHTEPPAJ

О пределение. Интегралом от a до b функции f называется приращение первообразной F этой функции.

$$\int_{a}^{b} f(x) dx = F(b) - F(a). \tag{9.5}$$

Формула (12.5) называется формулой Ньютона — Лейбница. Три правила вычисления интегралов.

1. Интегрирование суммы:

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$
 (9.6)

2. Вынесение постоянного множителя за знак интеграла:

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx, \text{ где } k - \text{постоянная.}$$
 (9.7)

3. Замена переменной по формуле t = kx + p, где k и p — постоянные, $k \neq 0$.

$$\int_{a}^{b} f(kx+p) dx = \frac{1}{k} \int_{ka+p}^{kb+p} f(t) dt.$$
 (9.8)

УПРАЖНЕНИЯ

Докажите, что функция F есть первообразная для функции f на указанном промежутке, если:

1.
$$F(x) = -\cos x + 3$$
; $f(x) = \sin x$; $x \in]-\infty$; $\infty[$.

2.
$$F(x) = \sin x - 1$$
; $f(x) = \cos x$; $x \in]-\infty$; $\infty[$.

3.
$$F(x) = \lg x + 4x^2$$
; $f(x) = \frac{1}{\cos^2 x} + 8x$; $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.

4.
$$F(x) = \operatorname{ctg} x + 3 \cdot \frac{x^4}{4}$$
; $f(x) = -\frac{1}{\sin^2 x} + 3x^3$; $x \in]0$; $\pi[$.

5.
$$F(x) = 3x - 5\cos 2x$$
; $f(x) = 3 + 10\sin 2x$; $x \in] -\infty$; $\infty[$.

6.
$$F(x) = \frac{1}{2}x^2 + 2x \sin\left(\frac{x}{2} + \frac{\pi}{4}\right); \quad f(x) = x + 2 \sin\left(\frac{x}{2} + \frac{\pi}{4}\right) + x \cos\left(\frac{x}{2} + \frac{\pi}{4}\right); \quad x \in] - \infty; \quad \infty[.$$

7.
$$F(x) = |\lg x|$$
; $f(x) = -\frac{1}{\cos^2 x}$; $x \in \left] -\frac{\pi}{2}$; $0 \in \left[-\frac{\pi}{2} \right]$

8.
$$F(x) = |\operatorname{ctg} 2x|$$
; $f(x) = -\frac{2}{\sin^2 x}$; $x \in \left]0$; $\frac{\pi}{4}\right[$.

9.
$$F(x) = |\sin x + \cos x|$$
; $f(x) = -\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)$; $x \in \left[-\frac{5}{4}\pi; -\frac{\pi}{4}\right]$.

Найдите первообразную для функции f(x), если:

10.
$$f(x) = -2\sin x$$
. 11. $f(x) = 3\cos x$. 12. $f(x) = \frac{4}{\cos^2 x}$.

13.
$$f(x) = \frac{-5}{\sin^2 x}$$
. 14. $f(x) = 4\sin\left(2x - \frac{\pi}{4}\right)$.

15.
$$f(x) = -2\cos\left(\frac{x}{5} + \frac{\pi}{3}\right)$$
. 16. $f(x) = \frac{5}{\sin^2 4x}$. 17. $f(x) = \frac{8}{\cos^2 \frac{x}{3}}$.

18.
$$f(x) = 2\cos\frac{x}{3} - \frac{5}{\sin^2 10x} + \frac{\sin(2x-1)}{3} + \frac{3}{\cos^2(3x+2)}$$
.

Найдите для функции f(x) первообразную, график которой проходит через заданную точку:

19.
$$f(x) = 2 \sin 2x$$
, $A(0; 5)$. 20. $f(x) = 4 \cos 8x$, $A(\frac{\pi}{4}; 1)$.

21.
$$f(x) = 4 \cos 4x - \frac{10}{\cos^2 \frac{x}{2}}$$
, $A(\frac{\pi}{2}; 2)$.

22.
$$f(x) = \frac{2}{\cos^2 2x} + \frac{3}{\sin^2 \frac{x}{4}}$$
, $A(\pi; 5)$.

23. График одной из первообразных функций $f(x) = 4\cos 2x + \frac{1}{2\cos^2\frac{x}{2}} + \frac{1}{\sin^2x}$ проходит через точку $A\left(\frac{\pi}{2}; 2\right)$, а второй —

через точку $B\left(-\frac{\pi}{2}; 3\right)$. Какова разность этих первообразных?

Вычислите интеграл:

24.
$$\int_{0}^{\frac{\pi}{8}} \frac{dx}{\cos^{2} 2x}$$
 25.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \frac{x}{2} dx$$
 26.
$$\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} \sin \left(3x - \frac{\pi}{4}\right) dx$$

27.
$$\int_{-\frac{\pi}{24}}^{\frac{5\pi}{24}} \frac{dx}{\sin^2\left(2x + \frac{\pi}{3}\right)} \cdot 28 \int_{0}^{2\pi} \sin 3x \cos 5x \, dx. \quad 29. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 2x \, dx.$$

Вычислите площадь, ограниченную линиями:

30.
$$y = 2 \sin 2x$$
; $y = 0$; $0 \le x \le \frac{\pi}{2}$.

31.
$$y = \frac{1}{\cos^2 x}$$
; $y = 0$; $x = 0$; $x = \frac{\pi}{4}$.

32.
$$y = \sin x$$
; $y = \frac{2}{\pi}x$; $y \geqslant \frac{2}{\pi}x$; $x \geqslant 0$.

Ответы

10.
$$2\cos x + C$$
. 11. $3\sin x + C$. 12. $4 \log x + C$.

13.
$$5 \operatorname{ctg} x + C$$
. 14. $-2 \cos \left(2x - \frac{\pi}{4}\right) + C$. 15. $-10 \sin \left(\frac{x}{5} + \frac{\pi}{3}\right) + C$.

16. $-\frac{5}{4}$ ctg 4x + C. 17. 24 tg $\frac{x}{3} + C$.

18. $6\sin\frac{x}{3} + \frac{1}{2}\operatorname{ctg} 10x - \frac{1}{6}\cos(2x-1) + \operatorname{tg}(3x+2) + C$.

19. $-\cos 2x + 6$. 20. $\frac{1}{2}\sin 8x + 1$. 21. $\sin 4x - 20 \operatorname{tg} \frac{x}{2} + 22$.

22. $tg 2x - 12 ctg \frac{x}{4} + 17$. 23. 3. 24. $\frac{1}{2}$. 25. $2\sqrt{2}$. 26. $\frac{1}{3}$.

27. 1. 28. 0. 29. $\frac{\pi}{2}$. 30. 2. 31. 1. 32. $1 - \frac{\pi}{4}$.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

1. Продифференцируйте функцию F(x). Должно получиться f(x).

2. См. пример 1.

3. Учтите, что $(\lg x)' = \frac{1}{\cos^2 x}$.

4. См. пример 3.

5. Учтите, что $y = \cos 2x - c$ ложная функция.

6. Функцию $2x \sin\left(\frac{x}{2} + \frac{\pi}{4}\right)$ продифференцируйте как произведение, учтите, что $y = \sin\left(\frac{x}{2} + \frac{\pi}{4}\right)$ — сложная функция.

7. Учтите, что $\lg x < 0$ для $x \in \left] -\frac{\pi}{2}; 0 \right[$.

8. Учтите, что ctg 2x > 0 для $x \in \left[0; \frac{\pi}{4}\right]$.

9. Учтите, что $\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$.

10. Воспользуйтесь правилом 2 и формулой (9.1).

11. Воспользуйтесь правилом 2 и формулой (9.2).

12. Представьте $\frac{4}{\cos^2 x}$ в виде $4 \cdot \frac{1}{\cos^2 x}$ и воспользуйтесь правилом 2 и (9.3).

13. См. пример 12.

14. Воспользуйтесь правилом 3 и формулой (9.1).

15. См. пример 14.

16. См. пример 15.

17. См. пример 16.

18. Воспользуйтесь правилами 1, 2, 3.

19. Любая первообразная для функции $2 \sin 2x$ имеет вид $y = -\cos 2x + C$. Подставьте сюда координаты точки A (0; 5).

20. См. пример 19.

21. Любая первообразная для заданной функции имеет вид $y = \sin 4x - 20 \text{ tg } \frac{x}{2} + C$. Подставив сюда координаты точки $A(\frac{\pi}{2}; 2)$, найдите C.

22. См. пример 21.

A CONTRACTOR OF THE PARTY OF TH

- 23. Найдите обе первообразные и воспользуйтесь тем, что разность двух первообразных для одной и той же функции есть величина постоянная.
- **24.** Сделайте замену t = 2x.
- **25.** Сделайте замену $t = \frac{x}{2}$. См. 24.
- **26.** Сделайте замену $t = 3x \frac{\pi}{4}$. См. 25.
- 27. Сделайте замену $t = 2x + \frac{\pi}{3}$. См. 26.
- 28. Преобразуйте произведение sin 3x cos 5x в сумму.
- **29.** Используйте формулу $\sin^2 2x = \frac{1 \cos 4x}{2}$.
- 30. Сделайте рисунок.
- 31. См. примеры 30 и 12.
- 32. Сделайте рисунок и заметьте, что искомая площадь равна разности площадей двух криволинейных трапеций. Границы интегрирования найдите, приравняв ординаты графиков для функций: $y = \sin x$ и $y = \frac{2}{\pi}x$.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

- 1. $F'(x) = (-\cos x + 3)' = (-\cos x)' + (3)' = \sin x$.
- 2. См. пример 1.
- 3. См. пример 1.
- 4. Учтите, что $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$ и $\left(3 \cdot \frac{x^4}{4}\right)' = 3 \cdot \frac{1}{4} \cdot 4x^3 = 3x^2$.
- 5. По правилу дифференцирования сложной функции ($\cos 2x$)' = $-\sin 2x \cdot 2$.
- 6. $F'(x) = \frac{1}{2} \cdot 2x + 2\sin\left(\frac{x}{2} + \frac{\pi}{4}\right) + x\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) \cdot \frac{1}{2} \cdot 2$.
- 7. Для $x \in]-\frac{\pi}{2}$; 0[|tgx|] = -tgx, поэтому $(|tgx|)' = -\frac{1}{\cos^2 x}$.
- 8. Для $x \in \left]0; \frac{\pi}{4} \right[\operatorname{ctg} 2x > 0$, поэтому $\left|\operatorname{ctg} 2x\right| = \operatorname{ctg} 2x$. Воспользуйтесь правилом дифференцирования сложной функции.
- 9. Для $x \in \left[-\frac{5}{4}\pi; -\frac{\pi}{4} \right] \sin \left(x + \frac{\pi}{4} \right) < 0$, поэтому $|\sin x + \cos x| = \left| \sqrt{2}\sin \left(x + \frac{\pi}{4} \right) \right| = -\sqrt{2}\sin \left(x + \frac{\pi}{4} \right)$. Далее дифференцируйте эту функцию.
- 10. По правилу 2 и формуле (9.1) $F(x) = -2(-\cos x) + C$.
- 11. См. пример 10.
- 12. См. пример 11.
- 13. См. пример 12.

14. В этом примере при применении правила 3 учтите, что
$$k=2$$
; $b=-\frac{\pi}{4}$, а одна из первообразных $\sin t$ есть — $\cos t$. Поэтому $F(x)=4\left(-\frac{1}{2}\cos\left(2x-\frac{\pi}{4}\right)\right)+C=-2\cos\left(2x-\frac{\pi}{4}\right)+C$.

- 15. Учтите, что $k = \frac{1}{5}$, $b = \frac{\pi}{3}$, а одна из первообразных $\cos t$ есть $\sin t$.
- 16. Учтите, что k=4, b=0, а одна из первообразных функции $\frac{1}{\sin^2 t}$ есть $\cot t$.
- 17. См. пример 16.
- 18. Учтите, что по правилу 3 одна из первообразных для функции $\cos \frac{x}{3}$ есть $3 \sin \frac{x}{3}$, для функции $\frac{1}{\sin^2 10x}$ есть $-\frac{1}{10}$ etg 10x, для функции $\sin (2x-1)$ есть $-\frac{1}{2}\cos (2x-1)$, а для функции $\frac{1}{\cos^2 (3x+2)}$ есть $\frac{1}{3}$ tg (3x+2).
- 19. Любая первообразная для заданной функции имеет вид: $y = -\cos 2x + C$. Подставив сюда координаты точки A (0; 5), имеете $5 = -\cos 0 + C$. Отсюда C = 6.
- 20. Подставив в $y = \frac{1}{2} \sin 8x + C$ координаты точки $A(\frac{\pi}{4}; 1)$, получите $1 = \frac{1}{2} \cdot 0 + C$, откуда C = 1.
- **21.** Уравнение для нахождения C имеет вид:

$$2 = \sin 4 \, \frac{\pi}{2} - 20 \, \text{tg} \frac{\pi}{4} + C.$$

- 22. Любая первообразная для заданной функции имеет вид: $y = tg \ 2x 12 \ ctg \ \frac{x}{4} + C$. Найдите C.
- 23. Первообразная, график которой проходит через точку $A\left(\frac{\pi}{2}; 2\right)$, имеет вид $F_1(x) = 2\sin 2x + \lg \frac{x}{2} \operatorname{ctg} x + 1$, вторая первообразная $F_2(x) = 2\sin 2x + \lg \frac{x}{2} \operatorname{ctg} x + 4$.
- 24. t=2x. Новые границы интегрирования получатся из уравнений $t=2\cdot 0$ и $t=2\cdot \frac{\pi}{8}$. Поэтому $\int\limits_0^{\frac{\pi}{8}} \frac{dx}{\cos^2 2y} = \frac{1}{2} \int\limits_0^{\frac{\pi}{4}} \frac{dt}{\cos^2 t}$. См. формулу (9.8).

- 25. После замены $t=\frac{x}{2}$ получите: $\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos\frac{x}{2}\,dx=2\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\cos t\,dt,$ так $-\frac{\pi}{2}$ как $t=-\frac{1}{2}\cdot\frac{\pi}{2}=-\frac{\pi}{4}$ и $t=\frac{1}{2}\cdot\frac{\pi}{2}=\frac{\pi}{4}.$ См. формулу (9.8).
- **26.** После замены $t=3x-\frac{\pi}{4}$ новые границы интегрирования получатся из уравнений $t=3\cdot\frac{\pi}{12}-\frac{\pi}{4}$ и $t=3\cdot\frac{\pi}{4}-\frac{\pi}{4}$. См. формулу (9.8).
- **27.** Границы интегрирования найдите из уравнений $t = 2 \cdot \left(-\frac{\pi}{24}\right) + \frac{\pi}{3}$ и $t = 2 \cdot \frac{5}{24}\pi + \frac{\pi}{3}$. См. пример 26.
- 28. Используйте формулу $\sin \alpha \cos \beta = \frac{1}{2} (\sin (\alpha + \beta) + \sin (\alpha \beta)).$ Тогда $\int_{0}^{2\pi} \sin 3x \cos 5x \, dx = \frac{1}{2} \int_{0}^{2\pi} (\sin 8x + \sin (-2x)) \, dx =$

 $= \frac{1}{2} \int_{0}^{2\pi} \sin 8x \, dx - \frac{1}{2} \int_{0}^{2\pi} \sin 2x \, dx.$ Далее см. пример 26.

29. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 2x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos 4x) \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 4x \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx - \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx \, dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx \, d$

30. Из рисунка 1 видно, что $S = 2 \int_{0}^{2} \sin 2x \, dx$. См. пример 19.

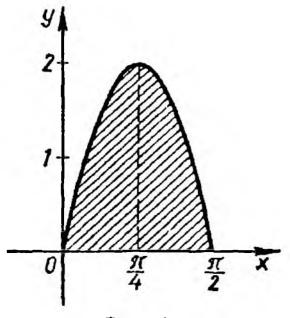
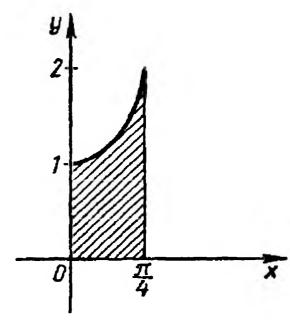
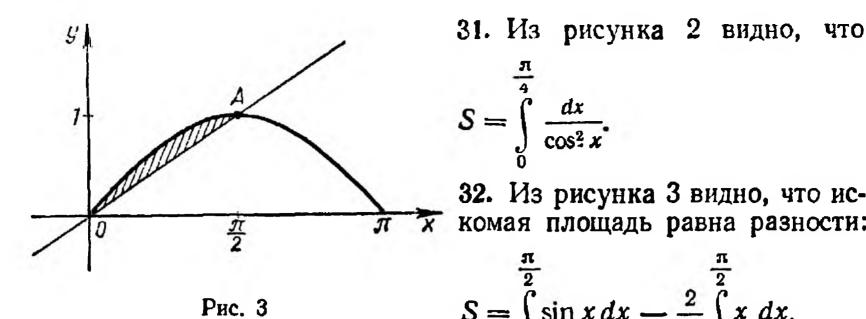


Рис. 1



Duc S



$$S = \int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^2 x}.$$

32. Из рисунка 3 видно, что ис-🛪 комая площадь равна разности:

$$S = \int_{0}^{\frac{\pi}{2}} \sin x \, dx - \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \, dx.$$

Границы интегрирования найдите из уравнения $\sin x = \frac{2}{\pi}x$ $x_1 = 0, x_2 = \frac{\pi}{2}.$

КОНТРОЛЬНОЕ ЗАДАНИЕ

Найдите для функции f(x) первообразную, график которой проходит через заданную точку:

1.
$$f(x) = \frac{1}{2\cos^2\frac{x}{2}} - \frac{1}{\sin^2x} + \frac{2}{\pi}$$
; $A(\frac{\pi}{2}; 0)$.

2.
$$f(x) = \sin 2x + 3\cos \frac{x}{2} + x^2$$
; $A(0; \frac{3}{2})$.

Вычислите интеграл:

$$3. \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \frac{dx}{\sin^2 2x} - 4 \int_{0}^{\frac{\pi}{2}} \cos \frac{x}{3} \, dx + 3 \int_{-\frac{\pi}{4}}^{0} \sin 4x \, dx - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^2 x}.$$

4.
$$\int_{0}^{\frac{\pi}{2}} \sin 2x \sin 4x \, dx, \, 5. \int_{0}^{\frac{\pi}{6}} \cos^{2} \frac{x}{2} \, dx. \, 6. \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \frac{dx}{\cos^{2} \left(2x - \frac{\pi}{4}\right)}.$$

7.
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sin\left(\frac{x}{2} + \frac{\pi}{6}\right) dx. \ 8. \int_{\frac{\pi}{9}}^{\frac{\pi}{6}} \cos\left(3x - \frac{\pi}{3}\right) dx. \ 9. \int_{-\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{dx}{\sin^2\left(x + \frac{\pi}{3}\right)}.$$

Найдите площадь фигуры, ограниченной линиями:

10.
$$y = 3 \cos \frac{x}{2}$$
; $y = 0$, $0 \le x \le \pi$.

11.
$$y = \cos x$$
; $y = \frac{2}{\pi}x + 1$, $-\frac{\pi}{2} \leqslant x \leqslant 0$.

Ответы

1.
$$F(x) = tg\frac{x}{2} + ctgx + \frac{2}{\pi}x - 2$$
.

2.
$$F(x) = -\frac{1}{2}\cos 2x - 6\sin \frac{x}{2} + \frac{x^3}{3} + 2$$
.

3. -7,5. 4. 0. 5.
$$\frac{1}{2} \left(\frac{\pi}{6} + \frac{1}{2} \right)$$
. 6. $\frac{1}{2}$. 7. 1. 8. $\frac{1}{6}$. 9. 1.

10. 6. 11.
$$1-\frac{\pi}{4}$$
.

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ И ИХ ОБЛАСТИ ОПРЕДЕЛЕНИЯ

Определение 1. Соответствие, которое каждому элементу множества X ставит в соответствие один и только один элемент множества Y, называется функцией.

Функция обозначается y = f(x).

Множество X называется областью определения функции и обозначается D(f).

Области определения некоторых элементарных функций:

1.
$$y = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
] $-\infty$; ∞ [
2. $y = \frac{f(x)}{\varphi(x)}$ $\varphi(x) \neq 0$

3. $y = \sqrt[n]{x}$ [0; ∞ [
4. $y = a^x$; $a > 0$] $-\infty$; ∞ [
5. $y = \log_a x$; $a > 0$, $a \neq 1$] 0 ; ∞ [
6. $y = \sin x$] $-\infty$; ∞ [
7. $y = \cos x$] $-\infty$; ∞ [
8. $y = \operatorname{tg} x$ $x \neq \frac{\pi}{2} + \pi k$; $k \in \mathbb{Z}$

9. $y = \operatorname{ctg} x$ $x \neq \pi k$; $k \in \mathbb{Z}$

10. $y = \operatorname{arccin} x$ [-1; 1]

11. $y = \operatorname{arccos} x$ [-1; 1]

12. $y = \operatorname{arctg} x$] $-\infty$; ∞ [
13. $y = \operatorname{arcctg} x$] $-\infty$; ∞ [

§ 2. ПЕРИОДИЧЕСКИЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ И НЕКОТОРЫЕ ИХ СВОЙСТВА

О пределение 2. Функция y = f(x) называется периодической, если существует число $T \neq 0$, такое, что при всех значениях x из области определения этой функции:

а) x - T и x + T также принадлежат ее области определения и б) f(x + T) = f(x).

Свойства периодических функций.

1. Область определения периодической функции содержит сколь угодно большие по абсолютной величине числа.

2. Непрерывная периодическая функция не может быть воз-

растающей или убывающей на всей области определения.

3. Если f(x) — периодическая функция, определенная на всей числовой прямой, то уравнение f(x+T)=f(x), где T рассматривается как неизвестное, а x как параметр, имеет по крайней мере одно положительное решение $T=T_0$, удовлетворяющее уравнению сразу при всех значениях параметра.

4. Для периодической функции f(x), определенной и непрерывной на всей числовой прямой, существует такое число M>0, что

неравенство $|f(x)| \leq M$ выполняется для всех $x \in R$.

5. Если периодическая функция дифференцируема, то ее произ-

водная -- периодическая функция с тем же периодом.

Для нахождения периода суммы периодических функций можно воспользоваться следующей теоремой: «Если $T_1 > 0$ — период $f_1(x)$ и $T_2 > 0$ — период $f_2(x)$, причем T_1 и T_2 соизмеримы и существуют значения x, принадлежащие одновременно области определения $f_1(x)$ и $f_2(x)$, то $f(x) = f_1(x) + f_2(x)$ периодическая функция, имеющая своим периодом число T, равное общему кратному периодов T_1 и T_2 ».

Под общим кратным периодов T_1 и T_2 мы будем понимать отрезок, в котором отрезки длины T_1 и T_2 содержатся целое число раз.

§ 3. ВОЗРАСТАНИЕ И УБЫВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Определение 3. Функция y=f(x) называется монотонно возрастающей (убывающей) в промежутке X, если для любых $x_1 \in X$ и $x_2 \in X$ из неравенства $x_1 < x_2$ следует неравенство $f(x_1) < f(x_2)$ ($f(x_1) > f(x_2)$).

Для возрастающей (убывающей) функции y = f(x) в промежут-

ках X выполняется неравенство f'(x) > 0; (f'(x) < 0).

§ 4. ПРИЕМЫ ПОСТРОЕНИЯ ГРАФИКОВ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Пусть график функции y = f(x) известен. Тогда:

- а) график функции y = f(x) + a получается из графика функции y = f(x) параллельным переносом $\vec{r}(0; a)$;
- б) график функции y = f(x + a) получается из графика функции y = f(x) параллельным переносом $\vec{r}(-a; 0)$;
- в) график функции $y = a \cdot f(x)$ получается из графика функции y = f(x) сжатием к оси Oy в отношении 1:a, где a>0;
- г) график функции y = f(ax) получается из графика функции y = f(x) сжатием к оси Ox в отношении $1:\frac{1}{a}$, где a>0.

УПРАЖНЕНИЯ

Найдите область определения функции:

1.
$$y = \sqrt{\sin x}$$
. 2. $y = \sqrt{\cos 2x}$. 3. $y = \frac{\sin x + \cos x}{\lg x + \lg x}$.

4.
$$y = \sqrt{|g \sin x|}$$
 5. $y = \sqrt{1 + |tg 3x|} + \frac{\cos(x + \pi)}{\sin(x - \pi)}$

6.
$$y = \frac{-\cos x + \sqrt{\cos^2 x - \frac{1}{4}}}{2\sin\left(\pi - \frac{x}{2}\right)}$$
. 7. $y = \sqrt{\lg\cos(2\pi x)}$.

8.
$$y = \cos 2x - \sqrt{1 - \sin 2x} (\sin x + \cos x)$$
.

9.
$$y = \log_{\frac{1}{\pi}} \lg x$$
. 10. $y = \arcsin \frac{2x}{1 + x^2}$.

11.
$$y = \arccos(1-x)$$
. 12. $y = \arccos\frac{4x}{1+x^2}$.

13.
$$y = \arcsin (\lg (x^2 - 1))$$
.

14.
$$y = \operatorname{arctg} \sqrt{x^2 - 1} + \operatorname{arcctg} x$$
, 15. $y = \frac{1}{1 - \sqrt{-\cos x}}$.

Определите период функции:

16.
$$y = -\sin 2x$$
. 17. $y = \cos \frac{x}{2}$. 18. $y = 4 \operatorname{tg} (3x + 1)$.

19.
$$y = 3 \operatorname{ctg} \frac{1}{4} (x + \pi)$$
. 20. $y = 5 \sin \left(\frac{2}{3} x - \frac{\pi}{3} \right)$.

21.
$$y = \left(\sin\frac{x}{2} + \cos 2x\right)$$
. 22. $y = \sin 3x + 2\cos 5x$.

23.
$$y = \sin \frac{4}{5}x + 3\cos \frac{7}{8}x + \cos 5x$$
. 24. $y = \sqrt{1 + \cos 4x}$.

25.
$$y = \frac{2 \sin 6x - \cos 4x}{3 \sin 6x + \cos 4x}$$
. 26. $y = \sin x + 3 \cos 7, 1x$.

27.
$$y = 2 \sin 4x - 3 \sin 5x - 7 \cos \left(\frac{x}{3} + 3\right)$$
.

28.
$$y = -\sin x + 3 \operatorname{tg} x$$
. 29. $y = \cos x - 2 \operatorname{tg} \frac{x}{4}$.

30.
$$y = tg x + tg 2x + tg 3x$$
. 31. $y = tg \frac{x}{7} + tg \frac{x}{11}$.

32.
$$y = \sqrt{\frac{1}{166x}} + \sqrt[3]{\frac{1}{166x}} + \sqrt[3]{\frac{1}{166x}} = \sqrt{\frac{1}{166x}} + \sqrt{\frac{1}{166x}} = \sqrt{\frac{1}{166x}}$$

34.
$$y = \lg 6x + \operatorname{ctg} \frac{x}{6}$$
.

Являются ли следующие функции периодическими:

35.
$$y = |\sin x|$$
. 36. $y = x + \cos x$. 37. $y = \sin x + \frac{1}{\sqrt{2}} \sin \sqrt{2}x$.

38.
$$y = \cos \sqrt{x}$$
, 39. $y = \sin^2 x$, 40. $y = \sin \frac{1}{x}$.

41.
$$y = \sin \ln |x|$$
. 42. $y = \arccos 2x$. 43. $y = \sqrt{1 - x^2}$. 44. $y = 2x \cos x^2$. 45. $y = \{x\} + \sin x$. 46. $y = \sin x^2$.

47.
$$y = \{x\} + \sin \pi x$$
.

Укажите промежутки монотонного возрастания и монотонного убывания функции:

48.
$$y = \cos \frac{x}{2}$$
. 49. $y = \sin 3x$. 50. $y = \sin \left(x - \frac{\pi}{4}\right)$.

51.
$$y = \cos(\frac{x}{3} + 2)$$
. 52. $y = \sin^2 x$. 53. $y = tg^4 x$.

54.
$$y = 1 - 2\sin^4\frac{x}{2}$$
. 55. $y = \frac{1}{2\sin x}$. 56. $y = \frac{1}{\sin(3x+5)}$.

57.
$$y = \sqrt{\cos x}$$
.

C помощью каких преобразований из графика функции $\mathbf{y} = \mathbf{cos} \, \mathbf{x}$ можно получить график функции:

58.
$$f(x) = \sin 2x$$
. 59. $f(x) = \cos \frac{x}{3}$. 60. $f(x) = 4 \sin x$.

61.
$$f(x) = \sin\left(x + \frac{\pi}{2}\right)$$
. 62. $f(x) = 2\cos(3x - 2)$.

63.
$$f(x) = \frac{1}{2}\sin(2x + 5)$$
.

64. График функции y = tg x подвергли преобразованиям: 1) сжатию к оси Оу в отношении 1:3; 2) переносу r (-2; 0); 3) сжатию к оси Ox в отношении k=5; 4) переносу r (0; 4). График какой функции получился?

С помощью параллельных переносов и сжатий постройте график функции:

65.
$$y = 2 \sin 3x$$
. 66. $y = -\frac{1}{2} \cos \left(x - \frac{\pi}{6}\right)$.

67.
$$y = \frac{3}{2} \sin\left(2x - \frac{\pi}{4}\right)$$
. 68. $y = \frac{3}{4} \sin 2x - \frac{3\sqrt{3}}{4} \cos 2x$.

69.
$$y = 2 \operatorname{tg} \left(-2x + \frac{2\pi}{3} \right)$$
. 70. $y = \frac{1}{5} \operatorname{ctg} \left(\frac{x}{2} - \frac{\pi}{4} \right)$.

Постройте график функции:

71.
$$y = \sin^2 x + \cos^2 x$$
. 72. $y = \frac{\cos x}{\sqrt{1 + \lg^2 x}} + \frac{\sin x}{\sqrt{1 + \operatorname{ctg}^2 x}}$.

73.
$$y = \cos 2x - \sqrt{1 - \sin 2x} (\sin x + \cos x)$$
.

74.
$$y = |\sin x|$$
. 75. $y = \sin |x|$. 76. $y = \frac{\sin x}{\sqrt{1 - \cos^2 x}}$. 77. $y = \sin^4 x + \cos^4 x$. 78. $y = x + \sin x$. 79. $y = x \sin x$.

77.
$$y = \sin^4 x + \cos^4 x$$
. 78. $y = x + \sin x$. 79. $y = x \sin x$.

80.
$$y = \log_{\frac{1}{\pi}} \lg x$$
. 81. $y = 3 + 2^{3 \cos{\frac{x}{3}}}$. 82. $y = x - \cos x$.

83.
$$y = |\sin x| + \sin x$$
. 84. $y = 2^{\sqrt{-\sin^3 x}}$.

Ответы

1.
$$2\pi k \leqslant x \leqslant \pi + 2\pi k$$
, $k \in \mathbb{Z}$. 2. $\pi k - \frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$.

3. **R** KPOME
$$x = \frac{\pi k}{2}$$
, $k \in \mathbb{Z}$. 4. $\left\{ \frac{\pi}{2} + 2\pi k \mid k \in \mathbb{Z} \right\}$.

5. R KPOME
$$x = \pi k, k \in \mathbb{Z}, x = \frac{\pi}{6} + \frac{\pi}{3}k, k \in \mathbb{Z}.$$

6.
$$2\pi k < x \leqslant \frac{\pi}{3} + 2\pi k, \ k \in \mathbb{Z}$$
,

$$2\pi k - \frac{\pi}{3} \leqslant x < 2\pi k, \ k \in \mathbb{Z}, \ 2\pi k + \frac{2}{3}\pi \leqslant x \leqslant \frac{4}{3}\pi + 2\pi k, \ k \in \mathbb{Z}.$$

7.
$$\{k \mid k \in \mathbb{Z}\}$$
. 8. \mathbb{R} . 9. $\pi k < x < \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}$.

10. R. 11.
$$[0; 2]$$
. 12. $]-\infty; -2-\sqrt{3}] \cup [-2+\sqrt{3}; 2-\sqrt{3}] \cup [2+\sqrt{3}; \infty[$. 13. $[-\sqrt{11}; -\sqrt{\frac{11}{10}}] \cup [\sqrt{\frac{11}{10}}; \sqrt{11}]$.

14.]—
$$\infty$$
; —1] U [1; ∞ [. 15. $2\pi k + \frac{\pi}{2} \leqslant x \leqslant \frac{3\pi}{2} + 2\pi k$,
 кроме $x = \pi + 2\pi k$, $k \in \mathbb{Z}$.

16.
$$T = \pi$$
. 17. $T = 4\pi$. 18. $T = \frac{\pi}{3}$. 19. $T = 4\pi$. 20. $T = 3\pi$.

21.
$$T = 4\pi$$
. 22. $T = 2\pi$. 23. $T = 80\pi$. 24. $T = \frac{\pi}{2}$.

25.
$$T = \pi$$
. 26. $T = 20\pi$. 27. $T = 6\pi$. 28. $T = 2\pi$.

29.
$$T = 4\pi$$
. 30. $T = \pi$. 31. $T = 77\pi$. 32. $T = \pi$.

33.
$$T = 30\pi$$
. 34. $T = 6\pi$. 35. Да, $T = \pi$. 36. Нет.

37. Нет. 38. Нет. 39. Да;
$$T=\pi$$
. 40. Нет. 41. Нет. 42. Нет.

43. Her. 44. Her. 45. Her. 46. Her. 47. Да,
$$T=2$$
.

48. Функция возрастает при
$$4\pi k - 2\pi < x < 4\pi k$$
 и убывает при $4\pi k < x < 2\pi + 4\pi k$, где $k \in \mathbb{Z}$.

49. Промежутки возрастания
$$\frac{2}{3}\pi k - \frac{\pi}{6} < x < \frac{\pi}{6} + \frac{2}{3}\pi k$$
 и убывания $\frac{2}{3}\pi k + \frac{\pi}{6} < x < \frac{\pi}{2} + \frac{2}{3}\pi k$, где $k \in \mathbb{Z}$.

50. Промежутки возрастания
$$2\pi k - \frac{\pi}{4} < x < \frac{3}{4}\pi + 2\pi k$$
, убывания $2\pi k + \frac{3}{4}\pi < x < \frac{7}{4}\pi + 2\pi k$, $k \in \mathbb{Z}$.

51. Возрастает при
$$6\pi k - 3\pi - 6 < x < -6 + 6\pi k$$
 и убывает при $6\pi k - 6 < x < 3\pi - 6 + 6\pi k$, $k \in \mathbb{Z}$.

52. Возрастает при
$$\pi k < x < \frac{\pi}{2} + \pi k$$
 и убывает при

$$\pi k - \frac{\pi}{2} < x < \pi k.$$

53. Возрастает при
$$\pi k < x < \frac{\pi}{2} + \pi k$$
 и убывает при $\pi k - \frac{\pi}{2} < x < \pi k$.

54. Возрастает при $2\pi k - \pi < x < 2\pi k$ и убывает $2\pi k < x < \pi + 2\pi k$. при

55. Возрастает при $2\pi k + \frac{\pi}{2} < x < \pi + 2\pi k$ и $2\pi k + \pi < x < \frac{3}{2}\pi + 2\pi k$ и убывает при $2\pi k - \frac{\pi}{2} < x < 2\pi k$ и $2\pi k < x < \frac{\pi}{2} + 2\pi k$, где $k \in \mathbb{Z}$.

56. Возрастает при $\frac{2}{3}\pi k + \frac{\pi}{6} - \frac{5}{3} < x < \frac{\pi}{3} - \frac{5}{3} + \frac{2}{3}\pi k$ и $\frac{2}{3}\pi k + \frac{\pi}{3} - \frac{5}{3} < x < \frac{\pi}{9} - \frac{5}{3} + \frac{2}{3}\pi k,$ убывает при $\frac{2}{3}\pi k - \frac{\pi}{6} - \frac{5}{3} < x < -\frac{5}{3} + \frac{2}{3}\pi k$ и $\frac{2}{3}\pi k - \frac{5}{3} < x < -\frac{5}{3} + \frac{\pi}{6} + \frac{2}{3}\pi k.$

57. Возрастает при $2\pi k - \frac{\pi}{2} < x < 2\pi k$ и убывает при $2\pi k < x < \frac{\pi}{2} + 2\pi k.$

58. С помощью сжатия к оси Oy в отношении $1:\frac{1}{2}$, параллельного переноса $r(\frac{\pi}{4}; 0)$.

59. С помощью сжатия к оси Оу в отношении 1:3.

60. С помощью параллельного переноса $\vec{r}\left(\frac{\pi}{2}; 0\right)$ и сжатия к оси Ox в отношении $k=\frac{1}{4}$.

61. Никаких преобразований графика $y = \cos x$ не нужно. 62. С помощью сжатия к оси Oy в отношении $1:\frac{1}{3}$, параллельного переноса $\vec{r}\left(\frac{2}{3};0\right)$ и сжатия к оси Ox в отношении $k=\frac{1}{2}$.

63. С помощью сжатия к оси O_y в отношении $1:\frac{1}{2}$, параллельного переноса $r(\frac{\pi}{4} - \frac{5}{2}; 0)$ и сжатия к оси Ох в отношении k = 2.

64. $f(x) = \frac{1}{5} \operatorname{tg} \left(\frac{x}{3} + \frac{2}{3} \right) + 4.$

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

1. Квадратный корень существует из любого неотрицательного числа. Учтите периодичность функции sin x.

2. См. пример 1.

3. Вспомните условия существования функций tg x, ctg x uдроби.

- **4.** Данная функция существует при всех x, при которых $\sin x > 0$ и $\lg \sin x \geqslant 0$.
- **5.** Функции тождественным преобразованием можно привести к виду $y = \sqrt{1 + |\lg 3x|} + \frac{\cos x}{\sin x}$. Выражение $1 + |\lg 3x|$ положительно при любых допустимых значениях x, поэтому областью определения являются те значения x, при которых $\lg 3x$ существует и $\sin x \neq 0$.
- 6. Должно быть $\cos^2 x \frac{1}{4} \ge 0$ и $\sin(\pi \frac{x}{2}) \ne 0$.
- 7. Вспомните область определения логарифма и квадратного корня.
- 8. Используйте условие существования квадратного корня.
- 9. Логарифмическая функция существует при положительном аргументе. Учтите, что эта функция имеет период, равный периоду тангенса.
- 10. Условие существования arcsin x такое: $|x| \le 1$. В данном случае под знаком arcsin стоит величина $\frac{2x}{1+x^2}$. Следовательно, $\left|\frac{2x}{1+x^2}\right| \le 1$.
- 11. См. пример 10.
- 12. См. пример 10.
- 13. Запишите условия существования логарифма и арксинуса.
- 14. Так как функции арктангенс и арккотангенс существуют при любом действительном значении аргумента, то достаточно записать условие существования корня.
- 15. Запишите условия существования квадратного корня и дроби.
- 16. Вспомните, как преобразуется график функции y = f(x) при замене аргумента x на kx.
- 17. См. пример 16.
- 18. Преобразуйте функцию к виду $y = a \lg (k (x b))$ и вспомните, как преобразуется график функции при замене x на x b и x на kx.
- 19. См. пример 18.
- 20. См. пример 18.
- 21. Периодом этой функции является наименьшее число, которое нацело делится на периоды слагаемых, т. е. на число 4π и π.
- 22. Найдите периоды T_1 и T_2 каждого слагаемого и их наименьшее общее кратное, т. е. то число, которое нацело делится на T_1 и T_2 .
- 23. См. пример 22.
- **24.** Область определения этой функции множество действительных чисел. Заметьте, что, если T является периодом этой функции, то при любом x, принадлежащем области определения функции, должно выполняться равенство $\sqrt{1 + \cos 4x} = \sqrt{1 + \cos 4(x + T)}$. Возведя в квадрат и преобразовав раз-

ность косинусов в произведение, получите равенство для определения периода T.

Замечание. Можно найти период этой функции легче, используя утверждение о том, что если g(x) периодическая функция ε периодом T, то функция f(g(x)) также периодическая с тем же периодом T.

- 25. Периоды функций sin 6x и $\cos 4x$ соответственно $T_1 = \frac{\pi}{3}$ и $T_2 = \frac{\pi}{2}$. Периодом данной функции является число, нацело делящееся на T_1 и T_2 .
- 26. См. пример 22.
- 27. См. пример 22.
- 28. См. пример 22.
- 29. См. пример 22.
- 30. См. пример 22.
- 31. См. пример 22.
- 32. См. замечание к задаче 24.
- 33. См. пример 22.
- 34. См. пример 22.
- 35. Область определения функции $y = |\sin x|$ множество действительных чисел. Заметьте, что функции $y = \sin x$ и $y = |\sin x|$ отличаются только при таких x, для которых $\sin x < 0$. Причем для таких x функция $y = |\sin x| = -\sin x$, т. е. положительна. Поэтому период функции $y = |\sin x|$ в два раза меньше периода функции $y = \sin x$.
- 36. Докажите, что непрерывная функция $y = x + \cos x$ возрастающая.
- 37. Докажите, что производная функции $y = \sin x + \sin \sqrt{2x}$ непериодическая.
- 38. Используйте условия того, что для периодической функции в область определения функции вместе с x должны войти все числа вида x + nT, где $n \in \mathbb{Z}$.
- 39. Преобразуйте функцию $y = \sin^2 x$ с помощью формулы понижения степени.
- 40. См. пример 38.
- 41. См. пример 40.
- **42.** Найдите D(f) и докажите, что вместе с $x_0 \in D(f)$ в D(f) не входит $x_0 + nT$.
- 43. См. пример 42.
- 44. Докажите, что непрерывная функция $y = 2x \cos x^2$ неограниченная.
- 45. Предположите, что функция $y = \{x\} + \sin x$ периодична с периодом T > 0, и докажите, что равенство $\{x + T\} + \sin (x + T) = \{x\} + \sin x$ выполняется при любых $x \in D$ (f) только при T = 0.

46. Используйте условие, что производная периодической функции должна быть периодической.

47. Найдите периоды функций $\{x\}$ и sin πx .

- 48. Найдите производную и определите, где она положительна и отрицательна.
- 49. Решите неравенства $3\cos 3x > 0$ и $3\cos 3x < 0$.

50. См. пример 49.

51. См. пример 48.

- 52. Предварительно упростите производную $y' = 2 \sin x \cos x = \sin 2x$.
- 53. Запишите производную $y' = 4 \lg^3 x \cdot \frac{1}{\cos^2 x}$ в виде $y' = \frac{4 \sin^3 x}{\cos^2 x}$ и исследуйте ее.
- 54. Преобразуйте производную $y' = -8 \sin^3 \frac{x}{2} \cos \frac{x}{2} \frac{1}{2} =$ $= -4 \sin^2 \frac{x}{2} \sin \frac{x}{2} \cos \frac{x}{2} = -2 \sin^2 \frac{x}{2} \sin x$ и исследуйте ее.
- 55. Найдите производную $y' = -\frac{\cos x}{2\sin^2 x}$. При исследовании ее учтите, что $\sin x \neq 0$ в области определения функции $y = \frac{1}{2\sin x}$.
- **56.** См. пример 55. Вместо x пишите 3x + 5 и решите полученные неравенства относительно x.
- 57. Найдите область определения функции и исследуйте производную с учетом области определения. Учтите, что период функции 2π .

58. Примените формулы приведения.

- **60.** Преобразуйте $f(x) = 4 \sin x = 4 \cos \left(\frac{\pi}{2} x\right) = 4 \cos \left(x \frac{\pi}{2}\right)$.
- 61. Преобразуйте $f(x) = \sin\left(x + \frac{\pi}{2}\right) = \cos x$.
- 62. $f(x) = 2\cos(3x-2) = 2\cos 3\left(x-\frac{2}{3}\right)$.
- 63. Преобразуйте $f(x) = \frac{1}{2}\sin(2x+5) = \frac{1}{2}\cos(\frac{\pi}{2}-(2x+5)) = \frac{1}{2}\cos(2(x+\frac{5}{2})-\frac{\pi}{2}) = \frac{1}{2}\cos(2(x+\frac{5}{2}-\frac{\pi}{4})) = \frac{1}{2}\cos(2(x-(\frac{\pi}{4}-\frac{5}{2})))$
- **64.** $f(x) = \frac{1}{5} \operatorname{tg} \frac{1}{3} (x+2) + 4$.
- **65.** График функции $y = \sin x$ нужно сжать к оси Оу в отношении $1:\frac{1}{3}$ и к оси Ox в отношении $1:\frac{1}{2}$.
- 66. График функции $y = \cos x$ перенесите параллельно $\vec{r}(\frac{\pi}{6}; 0)$, сожмите к оси Ox в отношении $1:\frac{1}{2}$.

67. Функцию
$$y = \frac{3}{2} \sin \left(2x - \frac{\pi}{4}\right)$$
 представьте в виде $y = \frac{3}{2} \sin 2 \cdot \left(x - \frac{\pi}{4}\right)$.

68. Предварительно преобразуйте функцию
$$y = \frac{3}{4} \sin 2x - \frac{3\sqrt{3}}{4} \cos 2x = \frac{3}{2} \left(\frac{1}{2} \sin 2x - \frac{\sqrt{3}}{2} \cos 2x \right) = \frac{3}{2} \left(\cos \frac{\pi}{3} \sin 2x - \frac{\pi}{3} \cos 2x \right) = \frac{3}{2} \sin 2 \left(x - \frac{\pi}{3} \right) = \frac{3}{2} \sin 2 \left(x - \frac{\pi}{6} \right).$$

69. Преобразуйте функцию
$$y = 2 \lg \left(-2x + \frac{2}{3}\pi\right) = -2 \lg 2\left(x - \frac{\pi}{3}\right)$$
.

70. Преобразуйте функцию
$$y = \frac{1}{5} \operatorname{ctg} \left(\frac{x}{2} - \frac{\pi}{4} \right) = \frac{1}{5} \operatorname{ctg} \frac{1}{2} \left(x - \frac{\pi}{2} \right)$$
.

71. Функция везде определена и $y = \sin^2 x + \cos^2 x = 1$.

72. Преобразуйте функцию

$$y = \frac{\cos x}{\sqrt{1 + \lg^2 x}} + \frac{\sin x}{\sqrt{1 + \operatorname{ctg}^2 x}} = \cos x |\cos x| + \sin x |\sin x|.$$

При
$$\begin{cases} \cos x > 0, \\ \sin x > 0 \end{cases}$$
 $y = \cos^2 x + \sin^2 x = 1.$

При
$$\begin{cases} \cos x < 0, \\ \sin x > 0 \end{cases}$$
 $y = -\cos^2 x + \sin^2 x = -\cos 2x.$
При $\begin{cases} \cos x > 0, \\ \sin x < 0 \end{cases}$ $y = \cos^2 x - \sin^2 x = \cos 2x.$

$$\Pi_{\text{pu}} \begin{cases} \cos x > 0, \\ \sin x < 0 \end{cases} \quad y = \cos^2 x - \sin^2 x = \cos 2x.$$

$$\Pi_{\text{PH}} \begin{cases} \cos x < 0, \\ \sin x < 0 \end{cases} \quad y = -\cos^2 x - \sin^2 x = -1.$$

Итак, на отрезке [$-\pi$; π] длиной в один период функция имеет вид:

$$y = \begin{cases} -1 & \text{при } -\pi < x < -\frac{\pi}{2}; \\ \cos 2x & \text{при } -\frac{\pi}{2} < x < 0; \\ -\cos 2x & \text{при } \frac{\pi}{2} < x < \pi; \\ 1 & \text{при } 0 < x < \frac{\pi}{2}. \end{cases}$$

73. Область определения функции — вся числовая ось, период $T=2\pi$. Преобразуйте функцию

$$y = \cos 2x - \sqrt{1 - \sin 2x} (\sin x + \cos x) =$$
 $= \cos 2x - \sqrt{\cos^2 x - 2 \sin x \cos x + \sin^2 x} (\cos x + \sin x) =$
 $= \cos 2x - |\cos x - \sin x| (\cos x + \sin x).$
При $\cos x \ge \sin x$ $y = \cos 2x - (\cos x - \sin x) (\cos x + \sin x) =$
 $= \cos 2x - \cos 2x = 0.$

При $\cos x < \sin x$ $y = \cos 2x + (\cos x - \sin x)(\cos x + \sin x) = \cos 2x + \cos 2x = 2 \cos 2x$.

Итак, на отрезке
$$\left[-\frac{3}{4}\pi; \, \frac{5}{4}\pi\right]$$
 длиной в один период $y = \begin{cases} 0, & \text{если } -\frac{3}{4}\pi \leqslant x \leqslant \frac{\pi}{4}; \\ 2\cos 2x, & \text{если } \frac{\pi}{4} < x < \frac{5\pi}{4}. \end{cases}$

- 74. Воспользуйтесь определением абсолютной величины.
- 75. Постройте график функции $y = \sin x$ при $x \geqslant 0$ и воспользуйтесь четностью функции $y = \sin |x|$.
- 76. Преобразуйте функцию $y = \frac{\sin x}{\sqrt{1-\cos^2 x}} = \frac{\sin x}{|\sin x|}$ и заметьте, что на отрезке [0; 2π] функция не существует при x = 0; π ; 2π :

$$y = \begin{cases} 1, \text{ при } 0 < x < \pi, \\ -1, \text{ при } \pi < x < 2\pi. \end{cases}$$

- 77. Преобразуйте функцию $y = \sin^4 x + \cos^4 x = (\sin^2 x)^2 + (\cos^2 x)^2 = \frac{(1 \cos 2x)^2}{4} + \frac{(1 + \cos 2x)^2}{4} = \frac{2 + 2\cos^2 2x}{4} = \frac{2 + 1 + \cos 4x}{4} = \frac{3}{4} + \frac{\cos 4x}{4}$
- 78. Заметьте, что производная функции $y' = 1 + \cos x \ge 0$ при любых значениях x. Следовательно, функция неубывающая. Так как $-x + \sin(-x) = -(x + \sin x)$, т. е. при замене x на -x функция меняет свой знак, то она нечетна. Постройте график функции при $x \ge 0$, складывая функции x и $\sin x$, Воспользуйтесь свойством нечетности.
- 79. Функция определена при любых x, четная. Обращается в нуль или при x = 0, или при sin x = 0. График функции $y = x \cdot sin x$ постройте, рассматривая ее как произведение функций x и sin x, воспользуйтесь свойством четности.
- 80. Функция периодична с периодом, равным периоду tg x, τ . е. π . Поэтому достаточно исследовать ее на отрезке $[0; \pi]$. Функция $y = \log_{\mathbf{I}} tg x$ существует только при tg x > 0, τ . е. при

$$0 < x < \frac{\pi}{2}$$
. Производная функции

$$y' = \frac{\log_{\frac{1}{\pi}} e}{\operatorname{tg} x} \cdot \frac{1}{\cos^2 x} = \frac{\log_{\frac{1}{\pi}} e}{\sin x \cos x} = \frac{2 \log_{\frac{1}{\pi}} e}{\sin 2x} \text{ при } 0 < x < \frac{\pi}{2}$$

в нуль не обращается и существует. Следовательно, критиче-2 log, е

ских точек нет. При $0 < x < \frac{\pi}{2}$ $y' = \frac{\pi}{\sin 2x} < 0$. Следователь-

но, функция убывает, обращаясь в нуль в точке $x = \frac{\pi}{4}$.

81. Функция определена на всей числовой оси, период $T=6\pi$. Производная $y'=-\ln 2\cdot 2^{\frac{3\cos\frac{x}{3}}{3}} \sin\frac{x}{3}$. Составьте таблицу на отрезке $[-3\pi;3\pi]$ длиной в один период $T=6\pi$.

x	—3 n]—3π; 0[0]0; 3π[3 π
y' (x)	0	+	0		0
y (x)	$3\frac{1}{8}$	7	11	7	3 1 8
	min		max		min

82. См. пример 78.

83. Используя определение модуля, преобразуйте функцию

$$y = \begin{cases} 2 \sin x, & \text{при sin } x \geqslant 0, \\ 0, & \text{при sin } x < 0. \end{cases}$$

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

- 1. $\sin x \geqslant 0$. На периоде $T = 2\pi$ решением этого неравенства являются $0 \leqslant x \leqslant \pi$ (рис. 1). С учетом периодичности функции $\sin x$ имеем: $2\pi k \leqslant x \leqslant \pi + 2\pi k$, где $k \in \mathbb{Z}$.
- 2. Аналогично предыдущему примеру областью определения функции $y=\sqrt{\cos 2x}$ является множество таких значений x, для которых выполняются неравенства (рис. 2) $2\pi k \frac{\pi}{2} \leqslant 2x \leqslant \frac{\pi}{2} + 2\pi k$ или $\pi k \frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4} + \pi k$, где $k \in \mathbb{Z}$.
- 3. Функции $\lg x$, $\operatorname{ctg} x$ существуют соответственно при всех $x \neq \frac{\pi}{2} + \pi k$ и $x \neq \pi k$, где $k \in \mathbb{Z}$. Объединяя их, можно записать $x \neq \frac{\pi}{2} n$, $n \in \mathbb{Z}$. Кроме того, $\lg x + \operatorname{ctg} x \neq 0$ или $\lg x \neq -\operatorname{ctg} x$. Но последнее условие выполняется при всех допустимых x. Итак, ответ: $x \neq \frac{\pi}{2} k$, $k \in \mathbb{Z}$.

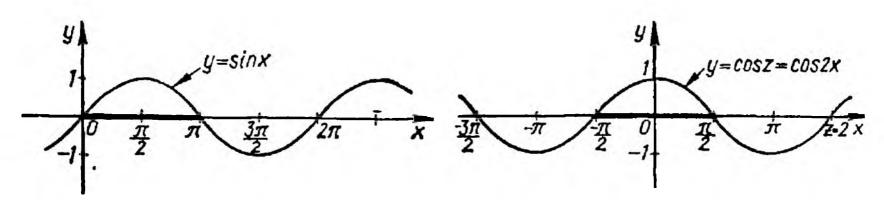


Рис. 1

Рис. 2

4. Областью определения данной функции является решение системы неравенств:

$$\begin{cases} \sin x > 0, \\ \lg \sin x \geqslant 0, \\ \Leftrightarrow \begin{cases} \sin x > 0, \\ \sin x \geqslant 1, \end{cases} \Leftrightarrow \sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}.$$

5. Должно быть $3x \neq \frac{\pi}{2} + \pi k$ и $x \neq \pi k$.



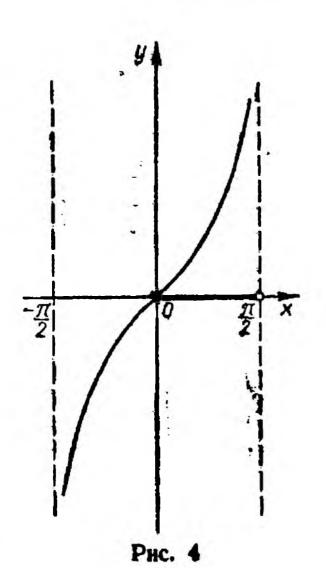
Рис. 3

6. Неравенство $\cos^2 x - \frac{1}{4} \geqslant 0$ равносильно такому: $\frac{1 + \cos 2x}{2} - \frac{1}{4} \geqslant 0$ или $\cos 2x \geqslant \frac{1}{2}$. Отсюда следует, что $2\pi k - \frac{2\pi}{3} \leqslant 2x \leqslant \frac{2\pi}{3} + 2\pi k$,

где $k \in \mathbb{Z}$ (рис. 3). Разделив все неравенства на 2, получим: $\pi k - \frac{\pi}{3} \leqslant x \leqslant \frac{\pi}{3} + \pi k$. Кроме этого условия, должно быть выполнено еще одно условие: $\sin\left(\pi - \frac{x}{2}\right) \neq 0$ или $\sin\frac{x}{2} \neq 0$, которое равносильно $\frac{x}{2} \neq \pi k$ или $x \neq 2\pi k$.

7. Областью определения данной функции является решение системы неравенств

$$\begin{cases} \cos 2\pi x > 0, & \Leftrightarrow \begin{cases} \cos 2\pi x > 0, \\ \log \cos 2\pi x \geqslant 0, \end{cases} \Leftrightarrow \begin{cases} \cos 2\pi x > 0, \\ \cos 2\pi x \geqslant 1, \end{cases} \Leftrightarrow \\ \Leftrightarrow \cos 2\pi x = 1 \Leftrightarrow 2\pi x = 2\pi k \Leftrightarrow x = k. \end{cases}$$



8. Должно выполняться неравенство

$$1-\sin 2x\geqslant 0$$
или $\sin 2x\leqslant 1$,

которое верно при любых x.

9. Так как tg x > 0 — область определения функции и тангенс — функция периодическая с наименьшим периодом л, то, решив это неравенство на периоде, имеем:

$$0 < x < \frac{\pi}{2}$$
 (puc. 4)

с учетом периодичности

$$\pi n < x < \frac{\pi}{2} + \pi n.$$

10.
$$\left|\frac{2x}{1+x^2}\right| \leqslant \left|1 \Leftrightarrow \begin{cases} \frac{2x}{1+x^2} \geqslant -1, \\ \frac{2x}{1+x^2} \leqslant 1, \end{cases} \Leftrightarrow \begin{cases} 2x \geqslant -1-x^2, \Leftrightarrow \\ 2x \leqslant 1+x^2, \end{cases} \Leftrightarrow \begin{cases} (x+1)^2 \geqslant 0, \Leftrightarrow -\infty < x < \infty. \end{cases}$$

11. $|1-x| \le 1 \Leftrightarrow -1 \le 1-x \le 1 \Leftrightarrow -2 \le -x \le 0 \Leftrightarrow 0 \le x \le 2$.

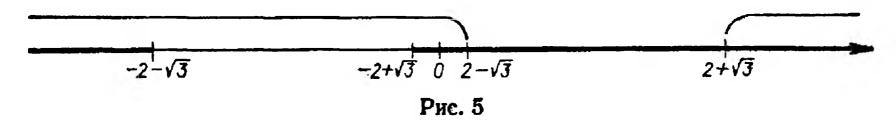
12. Данная функция существует, если выполняется неравенство $\left|\frac{4x}{1+x^2}\right| \le 1$, которое равносильно системе неравенств:

$$\begin{cases} \frac{4x}{1+x^2} \geqslant -1, \\ \frac{4x}{1+x^2} \leqslant 1, \end{cases} \Leftrightarrow \begin{cases} 4x \geqslant -1-x^2, \\ 4x \leqslant 1+x^2, \end{cases} \Leftrightarrow \begin{cases} x^2+4x+1 \geqslant 0, \\ x^2-4x+1 \geqslant 0. \end{cases}$$

Решением первого неравенства системы является множество

]—
$$\infty$$
; —2 — $\sqrt{3}$] U [—2 + $\sqrt{3}$; ∞ [, Broporo] — ∞ ; 2— $\sqrt{3}$] U U [2 + $\sqrt{3}$; ∞ [.

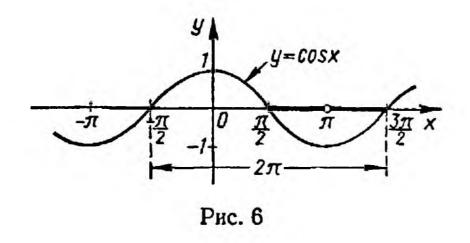
Решением системы является их пересечение (рис. 5).



13. Областью определения данной функции является решение системы неравенств

$$\begin{cases} x^{2}-1>0, \\ |\lg(x^{2}-1)| \leqslant 1, \end{cases} \Leftrightarrow \begin{cases} x^{2}>1, \\ x^{2}-1\geqslant \frac{1}{10}, \Leftrightarrow \begin{cases} x^{2}>1, \\ x^{2}\geqslant \frac{11}{10}, \Leftrightarrow \end{cases} \\ x^{2}\geqslant \frac{11}{10}, \Leftrightarrow \end{cases} \\ \Leftrightarrow \frac{11}{10}\leqslant x^{2}\leqslant 11\Leftrightarrow \sqrt{\frac{11}{10}}\leqslant |x|\leqslant \sqrt{11}.$$

14. $x^2 - 1 \geqslant 0 \Leftrightarrow x^2 \geqslant 1 \Leftrightarrow |x| \geqslant 1$.



Решение последней системы найдете лучше с помощью графика (рис. 6). Период косинуса $T=2\pi$, поэтому достаточно решить систему на отрезке $[0; 2\pi]$, длина которого равна периоду 2л. Получите $\left[\frac{\pi}{2}; \pi\right] \cup \left[\pi; \frac{3\pi}{2}\right]$.

Далее добавляйте к границам полуинтервалов $2\pi k$.

16. Наименьший период функции $y = \sin x$ есть $T = 2\pi$, а функции $y = -\sin 2x$ в 2 раза меньше.

- 17. В отличие от предыдущего примера период функции $y = \cos \frac{x}{2}$ в два раза больше периода функции $y = \cos x$.
- 18. Преобразуйте функцию $y = 4 \lg (3x + 1) = 4 \lg 3 \left(x + \frac{1}{3}\right)$. Период этой функции в 3 раза меньше периода функции $y = tg\left(x + \frac{1}{3}\right)$, а период функции при параллельном переносе не изменяется, поэтому периоды функций $y = tg\left(x + \frac{1}{3}\right)$ и tg x одинаковы.

19. См. пример 18.

20. См. пример 18.

21. Период первого слагаемого $T_1 = 4\pi$, второго $T_2 = \pi$. Отсюда легко заметить, что периодом функции $y = \sin \frac{x}{2} +$ $+\cos 2x$ является 4π , которое нацело делится на T_1 и T_2 .

22. Периоды слагаемых $T_1 = \frac{2\pi}{3}$ и $T_2 = \frac{2\pi}{5}$.

Приведите их к наименьшему общему знаменателю

$$T_1 = 10 \frac{\pi}{15}, \quad T_2 = 6 \frac{\pi}{15}.$$

Заметьте, что наименьшим числом, нацело делящимся на T_1 и T_2 , будет число

$$T = \frac{\pi}{15} \cdot \text{HOK} (10; 6) = \frac{\pi}{15} \cdot 30 = 2\pi.$$

23.
$$T_1 = \frac{5}{2}\pi = \frac{\pi}{70} \cdot 175$$
, $T_2 = \frac{16}{7}\pi = \frac{\pi}{70} \cdot 160$, $T_3 = \frac{2\pi}{5} = \frac{\pi}{70} \cdot 28$. Период функции $y = \sin \frac{4}{5}x + 3\cos \frac{7}{8}x + \cos 5x$ будет $T = \frac{\pi}{70} \cdot \text{HOK}$ (175; 160; 28) $= \frac{\pi}{70} \cdot 5600 = 80\pi$.

24. Из равенства $\sqrt{1 + \cos 4x} = \sqrt{1 + \cos (4x + 4T)}$ получите $\cos 4x - \cos (4x + 4T) = 0$ или $2 \sin (4x + 2T) \sin 2T = 0$. Так как последнее равенство должно выполняться при любых x. то должно быть $\sin 2T = 0$. Отсюда $2T = \pi$ или $T = \frac{\pi}{2}$.

25.
$$T_1 = \frac{\pi}{3} = \frac{\pi}{6} \cdot 2$$
, $T_2 = \frac{\pi}{2} = \frac{\pi}{6} \cdot 3$, $T = \frac{\pi}{6} \cdot 6 = \pi$.

26. См. пример 22.

27. См. пример 22.

28. См. пример 22.

29. См. пример 22.

30. См. пример 22.

31. См. пример 22.

82. В данной задаче функция g(x) равна tg 6x, а f(g(x)) равна $\sqrt[4]{tg 6x}$. Аналогично рассматривается второе слагаемое.

33. См. пример 32.

34. См. пример 22.

- **35.** Проверьте, что $f(x + \pi) = f(x)$; $|\sin(x + \pi)| = |-\sin x| = |\sin x|$.
- 36. $y' = 1 \sin x \ge 0$, следовательно, функция $y = x + \cos x$ возрастающая, непрерывная, поэтому непериодическая.
- **37.** Производная функции $y = \sin x + \frac{1}{\sqrt{2}} \sin \sqrt{2} x$ равна $y' = \cos x + \cos \sqrt{2}x$. При x = 0 значение y' = 2. Это значение y' принимает только 1 раз. Действительно,

$$\cos x + \cos \sqrt{2x} = 2 \Leftrightarrow \begin{cases} \cos x = 1, \\ \cos \sqrt{2x} = 1, \end{cases} \Leftrightarrow \begin{cases} x = 2\pi k, \\ \sqrt{2x} = 2\pi l, \end{cases} \Leftrightarrow \begin{cases} x = 2\pi k, \\ x = \frac{2}{\sqrt{2}}\pi l. \end{cases}$$

Отсюда следует, что должно быть $2\pi k = \frac{2\pi l}{\sqrt{2}}$, т. е. $k = \frac{l}{\sqrt{2}}$

Последнее равенство возможно только при k = l = 0.

- 38. Область определения функции $x \geqslant 0$. Пусть x = T > 0. Тогда разность T 2T отрицательная, следовательно, не входит в D(f), поэтому функция непериодична.
- **39.** Преобразуйте $y = \sin^2 x = \frac{1 \cos 2x}{2}$. Поэтому период функции $y = \sin^2 x$ равен периоду функции $\cos 2x$, т. е. $T = \pi$.
- 40. Пусть x = T произвольное положительное число, следовательно, оно входит в D(f). Но T T = 0 не входит в D(f), а по определению периодической функции в D(f), вместе с x должно войти любое число вида x + Tn, где $n \in \mathbb{Z}$. Поэтому функция $y = \sin \frac{1}{r}$ непериодична.

- 41. См. пример 40.
- 42. Функция определена на отрезке $\left[-\frac{1}{2};\frac{1}{2}\right]$. $x_0=\frac{1}{2}\in D(f)$. Пусть T>0. Тогда $x=\frac{1}{2}+Tn$ при $n\in N$ не принадлежит D(f). Следовательно, функция $y=\arccos 2x$ непериодична.
- 43. См. пример 42.
- 44. Допустим, что функция $2x \cos x^2$ периодическая с периодом T>0. На отрезке [0;T] длиной в один период функция $|2x\cos x^2| \leqslant 2T$, т. е. ограничена. Тогда в силу предположения о периодичности эта функция должна быть при любом $x \in D$ (f) не больше 2T, т. е. $|2x\cos x^2| \leqslant 2T$. Однако это неравенство при $x = \sqrt[3]{2\pi n}$, где $n > \frac{T^2}{2\pi}$, не выполняется. Следовательно, функция $y = 2x \cos x^2$ непериодична.
- 45. Пусть T > 0 период данной функции. Тогда при любом $x \in D(f)$ должно выполняться равенство:

$${x + T} + \sin(x + T) = {x} + \sin x.$$

При x = 0 получим: $\{T\} + \sin T = 0$. При x = -T получим: $0 = \{-T\} - \sin T$.

Сложив эти равенства, имеем: $\{T\} + \{-T\} = 0$.

Известно, что дробная часть любого числа, как положительного, так и отрицательного, неотрицательна. Поэтому из $(T) + \{-T\} = 0$ следует, что $\{T\} = \{-T\} = 0$. Это означает, что T — целое число. Из $\{T\} + \sin T = 0$ вследствие $\{+T\} = 0$ получается $\sin T = 0$, т. е. $T = \pi k$.

Итак, с одной стороны, T — целое число, с другой, $T = \pi k$. Но πk — целое только при k = 0. Поэтому T = 0. Следовательно, функция $\{x\}$ + $\sin x$ непериодична.

- 46. Производная данной функции $y' = 2x \cos x^2$. Она непериодична (см. 44).
- 47. Период функции $\{x\}$ равен 1, так как $\{x+1\} = \{x\}$, а $\sin \pi k$ имеет T=2. Следовательно, период функции $y=\{x\}+\sin \pi x$ равен 2.
- 48. Производная y' равна $y' = -\frac{1}{2}\sin\frac{x}{2}$. Промежутки возрастания находим из условия y' > 0, а именно, $-\frac{1}{2}\sin\frac{x}{2} > 0$. Отсюда следует $\sin\frac{x}{2} < 0$. Из рисунка 7 видно, что $\sin\frac{x}{2} < 0$ на периоде 2π для $-\pi < \frac{x}{2} < 0$. Так как через $2\pi k$ значения

Отсюда следует, что $4\pi k$ — $-2\pi < x < 4\pi k$, где $k \in \mathbb{Z}$. Аналогично находятся промежутки убывания.

49. Найдите производную данной функции $y' = 3 \cos 3x$.

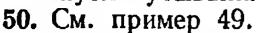
Решите неравенство $3\cos 3x > 0 \Leftrightarrow \cos 3x > 0 \Leftrightarrow 2\pi k$

$$-\frac{\pi}{2} < 3x < \frac{\pi}{2} + 2\pi k \Leftrightarrow$$

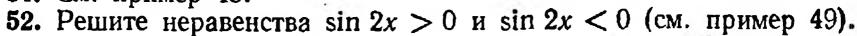
$$\frac{2}{3}\pi k - \frac{\pi}{6} < x < \frac{\pi}{6} + \frac{2}{3}\pi k,$$

где $k \in \mathbb{Z}$ (рис. 8).

Аналогично найдите промежутки убывания.



51. См. пример 48.



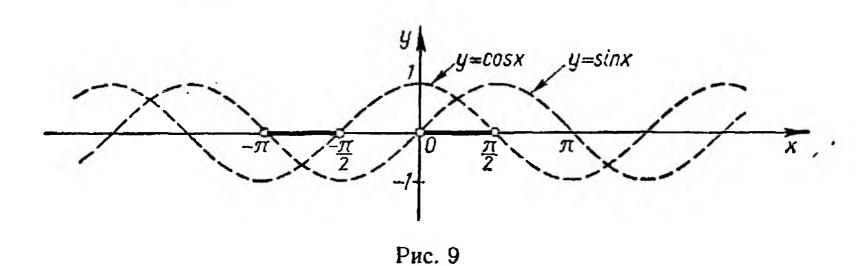
53. В промежутках возрастания производная $y' = \frac{4 \sin^3 x}{\cos^5 x} > 0 \Leftrightarrow$

Рис. 7

$$y = \cos 3x$$

Рис. 8

$$\Leftrightarrow \begin{bmatrix} \sin x > 0, \\ \cos x > 0, \\ \sin x < 0, \\ \cos x < 0, \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2\pi k < x < \frac{\pi}{2} + 2\pi k, \\ 2\pi k - \pi < x < -\frac{\pi}{2} + 2\pi k \text{ (phc. 9)}. \end{bmatrix}$$



Учитывая, что период функции $y = tg^4 x$ равен π и решения второй системы совокупности получаются из решений первой системы добавлением π , запишите $\pi k < x < \frac{\pi}{2} + \pi k$, где $k \in \mathbb{Z}$ (рис. 9).

54. Функция возрастает при

$$-2\sin^2\frac{x}{2}\sin x > 0 \Leftrightarrow \sin x < 0 \Leftrightarrow 2\pi k - \pi < x < 2\pi k.$$

Аналогично определите промежутки убывания.

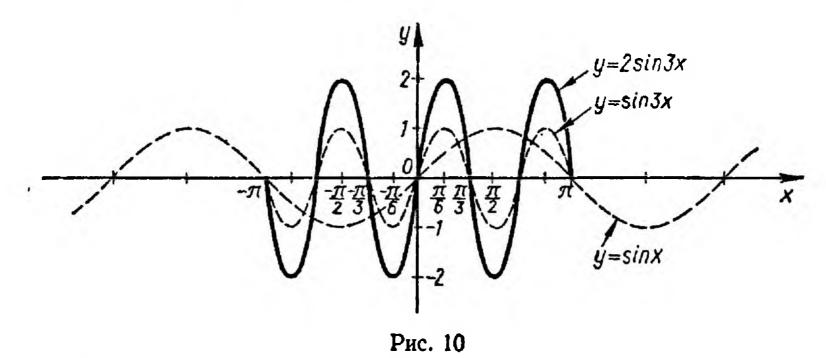
55. Функция возрастает при $-\frac{\cos x}{2\sin^2 x} > 0 \Leftrightarrow \begin{cases} \cos x < 0, \\ \sin x \neq 0, \end{cases}$ убывает при $-\frac{\cos x}{2\sin^2 x} < 0 \Leftrightarrow \begin{cases} \cos x > 0, \\ \sin x \neq 0, \end{cases}$

56. См. пример 55.

57. Область определения данной функции $2\pi k - \frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} + 2\pi k$. Производная $y' = -\frac{\sin x}{2\sqrt{\cos x}}$. При $-\frac{\pi}{2} < x < \frac{\pi}{2}$, производная y' > 0, если $\sin x < 0$ (a $\sin x < 0$ при $-\frac{\pi}{2} < x < 0$). Следовательно, функция $y = \sqrt{\cos x}$ возрастает при $2\pi k - \frac{\pi}{2} < x < 2\pi k$. Аналогично найдите промежутки убывания.

58. Преобразуйте функцию $y = \sin 2x = \cos \left(\frac{\pi}{2} - 2x\right) = \cos \left(2x - \frac{\pi}{2}\right) = \cos 2\left(x - \frac{\pi}{4}\right)$.

65. См. рисунок 10.



66. См. рисунок 11. Точки пересечения графика функции $y = -\frac{1}{2}\cos\left(x - \frac{\pi}{6}\right)$ с осью Ox удобно находить, решая уравнение $\cos\left(x - \frac{\pi}{6}\right) = 0$.

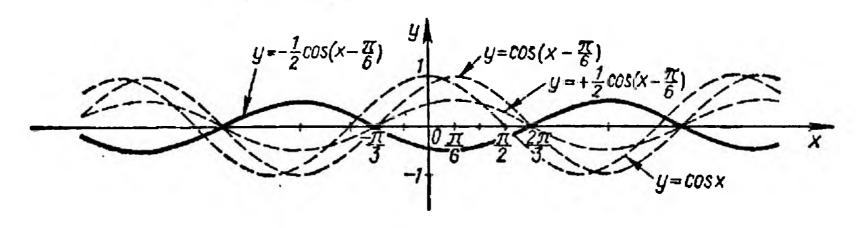
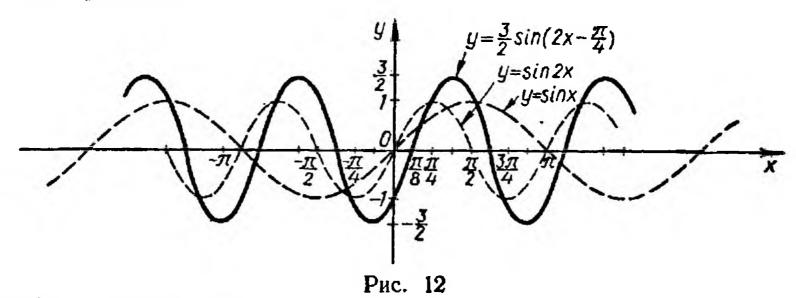


Рис. 11

67. См. рисунок 12.



68. См. рисунок 13.

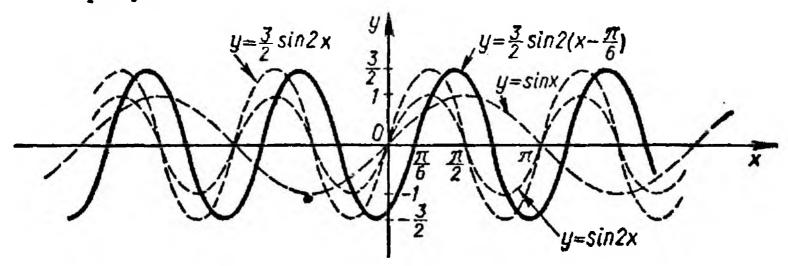
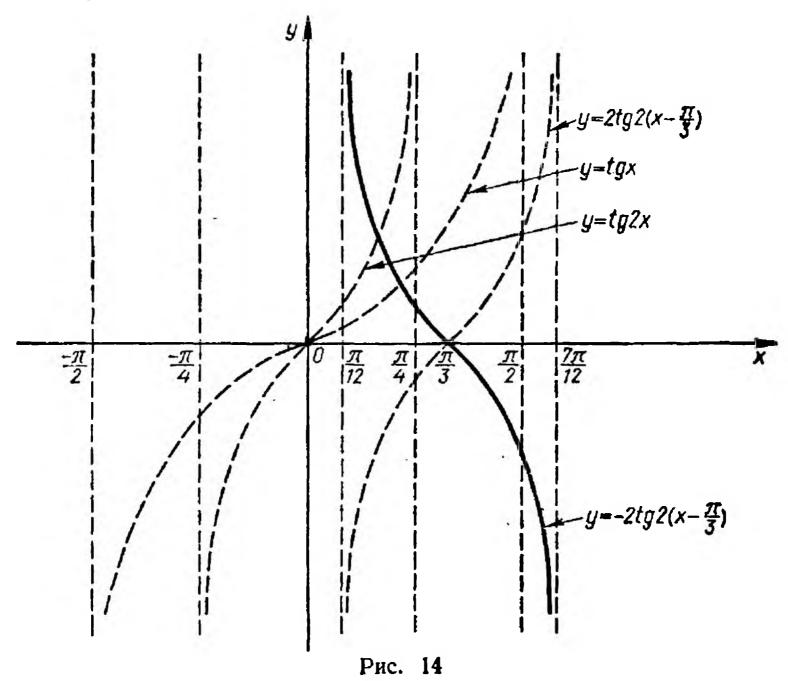


Рис. 13

69. См. рисунок 14.



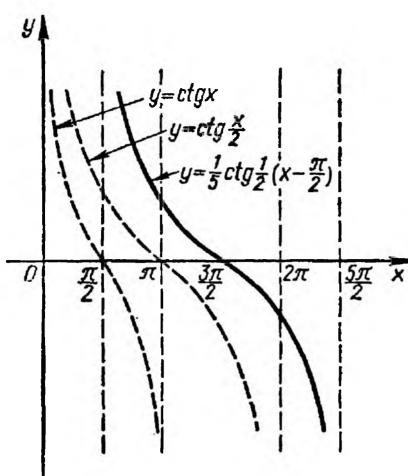


Рис. 15

72. См. рисунок 16.

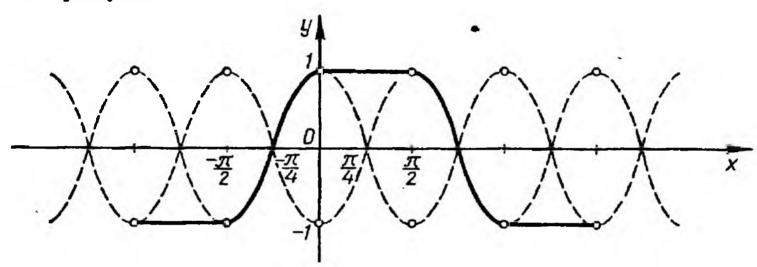
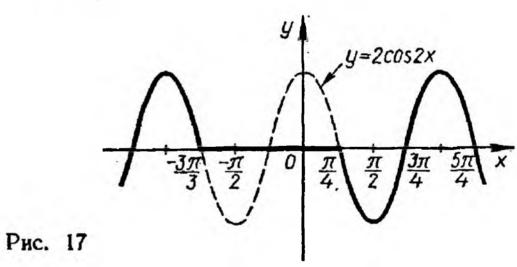


Рис. 16

73. См. рисунок 17.



74. См. рисунок 18.

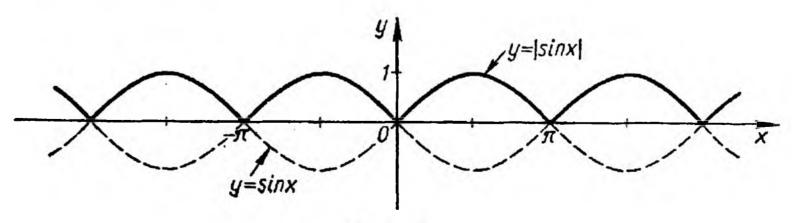


Рис. 18

75. См. рисунок 19.

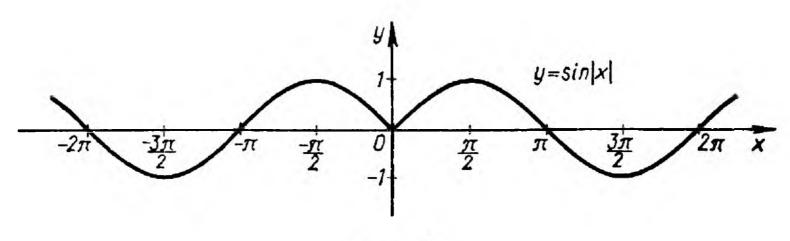
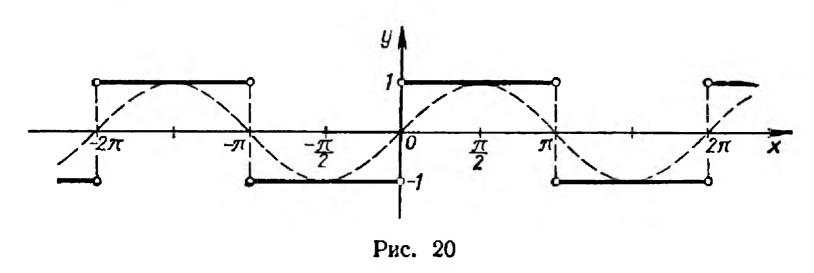


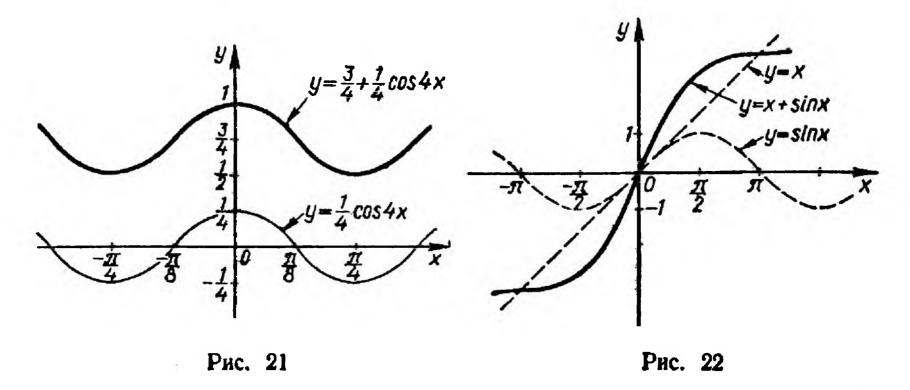
Рис. 19

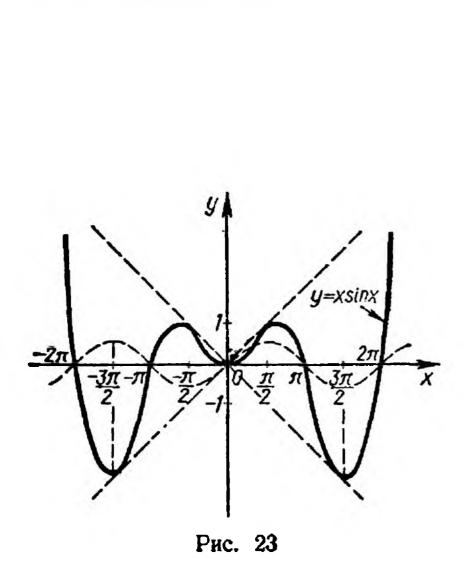
76. См. рисунок 20.



77. См. рисунок 21.

78. См. рисунок 22.





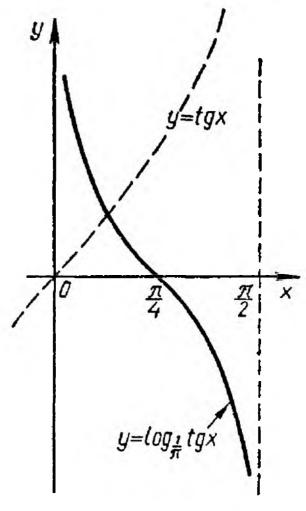


Рис. 24

81. См. рисунок 25.

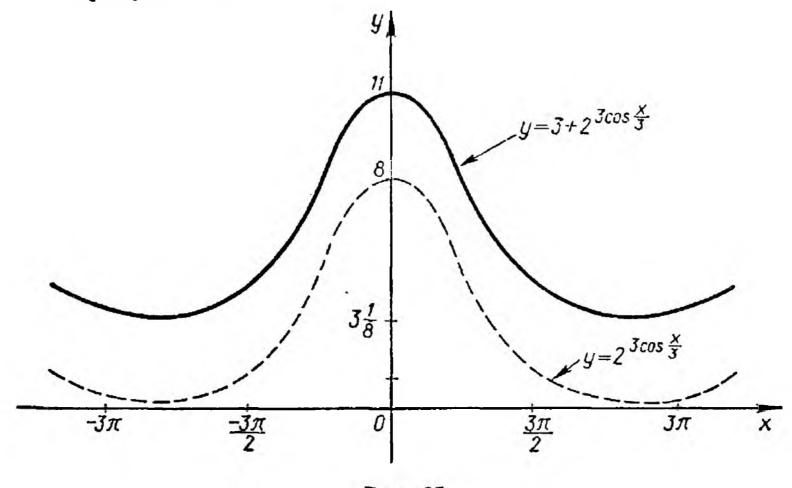
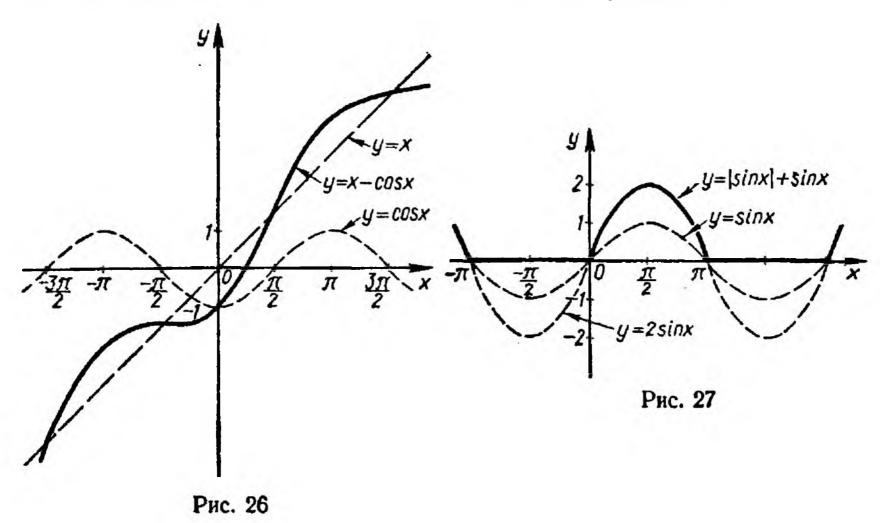
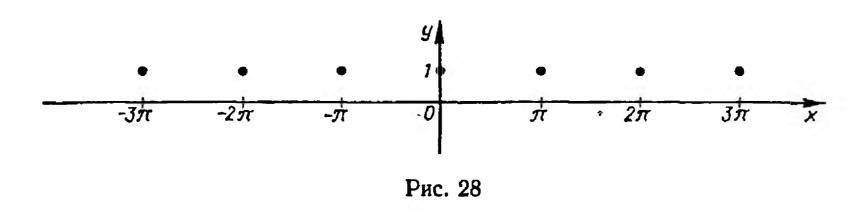


Рис. 25



84. См. рисунок 28.



КОНТРОЛЬНОЕ ЗАДАНИЕ

- 1. Найдите область определения функции:
 - a) $y = 2^{\sqrt{\log_2 \cos x}}$;
 - 6) $y = \arccos(\sin 2x)$.
- 2. Определите период функции:
 - a) $y = \operatorname{ctg} 3x$;
 - 6) $y = \sin 2x + 3 \cos 4x$;
 - B) y = tg 3x + cos 2x;
 - r) y = | tg x |.
- 3. С помощью каких преобразований из графика функции $y = \sin x$ можно получить график функции $y = 4 \sin \left(2x + \frac{\pi}{3}\right)$?
- 4. Постройте график функции

$$y = \sqrt{1 - \sin^2 x} + \sqrt{1 - \cos^2 x}.$$

- 1. a) $\{2\pi k \mid k \in Z\};$ 6) $]-\infty; \infty].$
- 2. a) $\frac{\pi}{3}$; b) π ; b) π ; r) π .
- **3.** С помощью сжатия к оси Oy в отношении 2:1 и к оси Ox в отношении 1:4 и параллельного переноса $\vec{r}\left(-\frac{\pi}{6};0\right)$.
- **4.** Предварительно преобразуйте функцию к виду $y = |\cos x| + |\sin x|$.

ЗАДАНИЕ 11

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ НЕРАВЕНСТВ

Решения неравенств $\sin x \leqslant a$ и $\sin x \geqslant a$ (рис. 1):

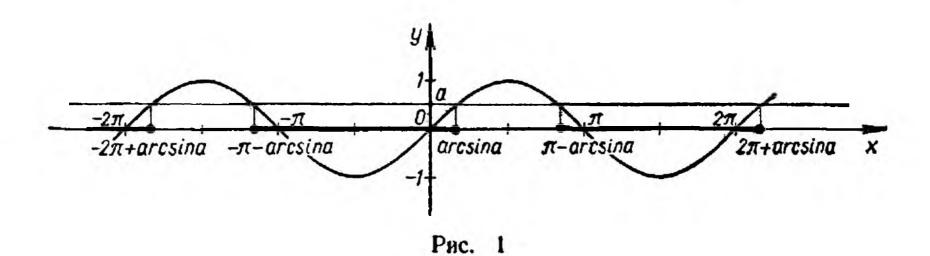
$$-\pi - \arcsin a + 2\pi k \leqslant x \leqslant \arcsin a + 2\pi k,$$
 arcsin $a + 2\pi k \leqslant x \leqslant \pi - \arcsin a + 2\pi k.$ (11.1)

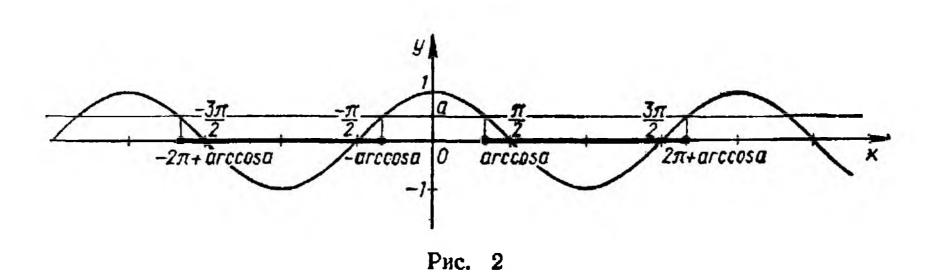
$$\arcsin a + 2\pi k \le x \le \pi - \arcsin a + 2\pi k.$$
 (11.2)

Решения неравенств $\cos x \leqslant a$ и $\cos x \geqslant a$ (рис. 2):

$$\arccos a + 2\pi k \le x \le 2\pi - \arccos a + 2\pi k$$
, (11.3)

$$-\arccos a + 2\pi k \leqslant x \leqslant \arccos a + 2\pi k. \tag{11.4}$$

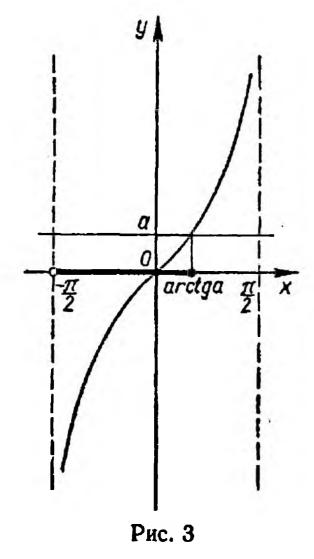




Решения неравенств tg $x \le a$ и tg $x \ge a$ (рис. 3):

$$-\frac{\pi}{2} + \pi k < x \leqslant \operatorname{arctg} a + \pi k. \tag{11.5}$$

$$arctg \ a + \pi k \leqslant x < \frac{\pi}{2} + \pi k. \tag{11.6}$$



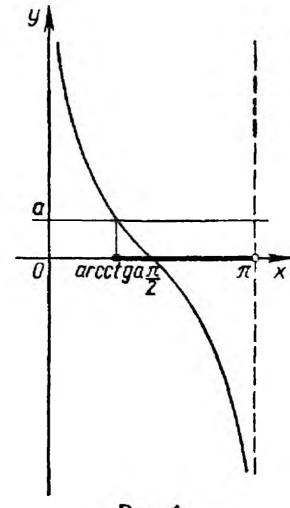


Рис. 4

Решения неравенств ctg $x \le a$ и ctg $x \ge a$ (рис. 4):

$$\operatorname{arcctg} a + \pi k \leqslant x < \pi + \pi k, \tag{11.7}$$

$$\pi k < x \leq \operatorname{arcctg} a + \pi k.$$
 (11.8)

При решении неравенств удобно пользоваться формулой введения вспомогательного угла:

$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin (x + \varphi),$$
 (11.9)

где ф находится из условия:

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}, \quad \cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}.$$

УПРАЖНЕНИЯ

Перед тем как начинать решать эти задачи, внимательно изучите теоретическую часть этого задания:

1.
$$\operatorname{ctg} x \leq -\sqrt{3}$$
. 2. $\sin x \geqslant \frac{1}{2}$. 3. $\sin x < 0, 4$. 4. $\cos x > -\frac{1}{2}$.

5.
$$-\frac{1}{2} < \sin x < \frac{1}{4}$$
. 6. $-\frac{\sqrt{3}}{2} \le \cos x < -\frac{1}{2}$. 7. $\cos(-2x+2) > \frac{1}{2}$. 8. $|\cos x| \ge \frac{\sqrt{2}}{2}$. 9. $|\lg x| > 2$. 10. $3\sin x + 1 > 0$.

11.
$$\lg x + 1 > 0$$
. 12. $2 \cos^2 x + 3 \cos x - 2 < 0$. 13. $\sin x > \cos^2 x$.
14. $\sin x + \cos x < \sqrt{2}$. 15. $\sin x > \cos x$. 16. $\cos^2 x + 1 > 3 \sin x \cos x$. 17. $\sin x \cos x > 0$. 18. $\sin x + \cos 2x > 1$.
19. $\lg x (1 + \cos 2x) < \cos 2x \lg 2x$. 20. $\cos^3 x \cos 3x - \sin^3 x \sin 3x > \frac{5}{8}$. 21. $\frac{5}{4} \sin^2 x + \frac{1}{4} \sin^2 2x > \cos 2x$.

1.
$$\frac{5}{6}\pi + \pi k \leq x < \pi (k+1), \ k \in \mathbb{Z}$$
. 2. $\frac{\pi}{6} + 2\pi k \leq x \leq \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z}$.

3.
$$-\arcsin 0.4 + \pi (2k+1) \le x \le \arcsin 0.4 + 2\pi (k+1), k \in \mathbb{Z}$$
.

4.
$$-\frac{2}{3}\pi + 2\pi k < x < \frac{2}{3}\pi + 2\pi k, \ k \in \mathbb{Z}$$
.

5.
$$-\frac{\pi}{6} + 2\pi k < x < \arcsin\frac{1}{4} + 2\pi k, \ k \in \mathbb{Z}; \ -\arcsin\frac{1}{4} + \pi (2k + 1) < x < \frac{7}{6}\pi + 2\pi k, \ k \in \mathbb{Z}.$$

6.
$$-\frac{5\pi}{6} + 2\pi k \le x < -\frac{2\pi}{3} + 2\pi k, \ k \in \mathbb{Z};$$

 $\frac{2\pi}{3} + 2\pi k < x \le \frac{5\pi}{6} + 2\pi k, \ k \in \mathbb{Z}.$

7.
$$-\frac{\pi}{6}+1+\pi k < x < \frac{\pi}{6}+1+\pi k, \ k \in \mathbb{Z}$$
.

8.
$$-\frac{\pi}{4} + \pi k \leqslant x \leqslant \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}.$$

9.
$$-\frac{\pi}{2} + \pi k < x < -\arctan 2 + \pi k, \ k \in \mathbb{Z}$$
.

$$\operatorname{arctg} 2 + \pi k < k < \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}.$$

10.
$$-\arcsin\frac{1}{3} + 2\pi k < x < \arcsin\frac{1}{3} + \pi (2k+1), k \in \mathbb{Z}.$$

11.
$$-\frac{\pi}{4} + \pi k < x < \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}.$$

12.
$$\frac{\pi}{3} + 2\pi k < x < \frac{5\pi}{3} + 2\pi k, \ k \in \mathbb{Z}.$$

13.
$$\arcsin \frac{\sqrt{5}-1}{2} + 2\pi k < x < -\arcsin \frac{\sqrt{5}-1}{2} + \pi(2k+1), k \in \mathbb{Z}.$$

14.
$$x \neq \frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$$
.

15.
$$\frac{\pi}{4} + 2\pi k < x < \frac{5\pi}{4} + 2\pi k, \ k \in \mathbb{Z}.$$

16.
$$\arctan 2 + \pi k \le x \le \frac{5\pi}{4} + \pi k, \ k \in \mathbb{Z}.$$

17.
$$\pi k < x < \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}$$
.

18.
$$2\pi k < x < \frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k < x < \pi + 2\pi k, \ k \in \mathbb{Z}.$$

19.
$$\varnothing$$
. 20. $\pi k - \frac{\pi}{12} < x < \frac{\pi}{12} + \pi k$; $\pi k + \frac{5}{12} \pi < x < \frac{7\pi}{12} + \pi k$; $k \in \mathbb{Z}$.

21.
$$\pi k + \frac{\pi}{6} < x < \frac{5}{6}\pi + \pi k, \ k \in \mathbb{Z}.$$

- 1. На интервале]0; π [постройте графики функций y = ctg x и y = -1/3. Найдите абсциссу x_0 точки пересечения этих графиков. Точка x_0 разбивает интервал]0; π [на два: (0; x_0) и (x_0 ; π), на одном из которых выполняется неравенство. Найдите этот интервал, для чего установите промежуток, на котором первый график расположен ниже второго.
- 2. Найдите корень x_0 уравнения $\sin x = \frac{1}{2}$, для чего в формуле его общего решения возьмите k = 0. Далее, построив синусонду $y = \sin x$ и прямую $y = \frac{1}{2}$, решите неравенство на отрезке $[x_0; x_0 + 2\pi]$ длины 2π .
- 3. См. пример 2.
- **4.** Найдите корень x_0 уравнения $\cos x = -\frac{1}{2}$, для чего в формуле его общего решения возьмите k=0 и знак минус перед арккосинусом.

Далее, построив косинусоиду $y = \cos x$ и прямую $y = -\frac{1}{2}$, решите неравенство на отрезке $[x_0; x_0 + 2\pi]$ длины 2π .

- 5. Найдите корни x_0 и x_1 уравнения $\sin x = -\frac{1}{2}$, для чего в формуле ето общего решения возьмите k=0 и k=1. Далее, постройте синусоиду $y=\sin x$ и прямые $y=-\frac{1}{2}$ и $y=\frac{1}{4}$, решите неравенство на отрезке $[x_0; x_0+2\pi]$ длины 2π . Для этого найдите на этом отрезке абсциссы x_2 и x_3 точек пересечения линий $y=\sin x$ и $y=\frac{1}{4}$.
- 6. Найдите корни x_0 и x_1 уравнения $\cos x = -\frac{\sqrt{3}}{2}$, для чего в формуле его общего решения возьмите k = 0. Далее, построив косинусоиду $y = \cos x$ и прямые $y = -\frac{\sqrt{3}}{2}$ и $y = -\frac{1}{2}$, решите неравенство на отрезке $[x_0; x_0 + 2\pi]$ длины 2π . Для этого найдите абсциссы x_2 и x_3 точек пересечения линий $y = \cos x$ и $y = -\frac{1}{2}$.
- 7. Применив свойство четности косинуса, введите подстановку t=2x-2. Далее см. пример 4.
- 8. Найдите корень x_0 уравнения $|\cos x| = \frac{\sqrt{2}}{2}$, для чего в формуле его общего решения возьмите k = 0 и знак минус перед арккосинусом. Далее, построив графики функций $y = \cos x$ и

прямую $y = \frac{\sqrt{2}}{2}$, решите неравенство на отрезке $[x_0; x_0 + \pi]$ длины π .

9. На интервале $\left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$ постройте линии $y = |\lg x|$ и y = 2. Найдите абсциссы x_0 и x_1 точек пересечения линий $y = |\lg x|$ и y = 2 на этом интервале. Затем укажите на нем промежутки, на которых первый график расположен выше второго.

10. Решите неравенство относительно $\sin x$.

- 11. Решите неравенство относительно tg x.
- 12. Введя подстановку $t = \cos x$, решите неравенство относительно t.
- 13. Выразите $\cos^2 x$ через $\sin x$ и введите подстановку $t = \sin x$.
- 14. Примените формулу (11.9) для преобразования двучлена $a \sin x + b \cos x$ в произведение.
- 15. Перенесите $\cos x$ в левую часть неравенства. Далее cm. пример 14.
- 16. Используйте тождество $1 = \sin^2 x + \cos^2 x$.
- 17. Примените формулу двойного аргумента для синуса.
- 18. Применив формулу двойного аргумента для косинуса, получите неравенство относительно $\sin x$ и введите подстановку $t = \sin x$.
- 19. Преобразовав сумму единицы и косинуса в произведение, произведите упрощение в левой и правой частях неравенства.
- 20. Преобразовав произведения $\cos x \cos 3x$ и $\sin x \sin 3x$ в суммы, выполните в левой части неравенства умножение и сгруппируйте члены, имеющие общие множители.
- **21.** Применив формулу понижения степени синуса и выразив $\sin^2 x$ через $\cos 2x$, получите неравенство относительно $\cos 2x$.

КОНСУЛЬТАЦИИ ВТОРОГФ УРОВНЯ

- 1. На интервале]0; π [котангенсоида $y = \operatorname{ctg} x$ пересекается с прямой $y = -\sqrt{3}$ в точке $x_0 = \operatorname{arctg} (-\sqrt{3}) = \frac{5}{6} \pi$. Далее учтите, что на интервале $x_0 < x < \pi$ котангенсоида проходит ниже прямой $y = -\sqrt{3}$, и воспользуйтесь свойством периодичности котангенса.
- 2. Уравнение $\sin x = \frac{1}{2}$ имеет решение $x = (-1)^k \frac{\pi}{6} + \pi k$. При k = 0 и k = 1 получаем отсюда: $x_0 = \frac{\pi}{6}$ и $x_1 = \frac{5\pi}{6}$. Далее учтите, что на интервале $x_0 < x < x_1$ синусоида $y = \sin x$ проходит выше прямой $y = \frac{1}{2}$, и воспользуйтесь свойством периодичности синуса.
- 3. Уравнение $\sin x = 0.4$ имеет решение $x = (-1)^k$ arcsin $0.4 + \pi k$. При k = 0 и k = 1 получаем отсюда: $x_0 = \arcsin 0.4$, $x_1 = \pi \arcsin 0.4$.

Далее учтите, что на интервале $x_1 < x < x_0 + 2\pi$ синусоида $y = \sin x$ проходит ниже прямой $y = \frac{1}{2}$, и воспользуйтесь свойством периодичности синуса.

- **4.** Уравнение $\cos x = -\frac{1}{2}$ имеет решение $x = \pm \frac{2}{3}\pi + 2\pi k$. При k = 0 получаем: $x_0 = -\frac{2}{3}\pi$ и $x_1 = \frac{2}{3}\pi$. Далее учтите, что на интервале $x_0 < x < x_1$ косинусоида $y = \cos x$ проходит выше прямой $y = -\frac{1}{2}$, и воспользуйтесь свойством периодичности косинуса.
- **5.** Уравнения $\sin x = -\frac{1}{2}$ и $\sin x = \frac{1}{4}$ имеют соответственно решения $x = (-1)^{k+1}$. $\frac{\pi}{6} + \pi k$ и $x = (-1)^l$ $\arcsin \frac{1}{4} + \pi l$. Отсюда при k = 0 получаем $x_0 = -\frac{\pi}{6}$; при k = 1 $x_1 = \frac{7}{6}$ π ; при l = 0 $x_2 = \arcsin \frac{1}{4}$; при l = 1 $x_3 = \pi \arcsin \frac{1}{4}$. Далее учтите, что на интервалах $x_0 < x < x_2$ и $x_3 < x < x_1$ синусоида проходит между прямыми $y = -\frac{1}{2}$ и $y = \frac{1}{4}$, и воспользуйтесь свойством периодичности синуса.
- 6. Уравнения $\cos x = -\frac{\sqrt{3}}{2}$ и $\cos x = -\frac{1}{2}$ имеют соответственно решения $x = \pm \frac{5}{6} \pi + 2\pi k$ и $x = \pm \frac{2}{3} \pi + 2\pi l$. Отсюда получаем: при k = 0 $x_0 = -\frac{5}{6} \pi$; $x_1 = \frac{5}{6} \pi$; при l = 0 $x_2 = -\frac{2}{3} \pi$, $x_3 = \frac{2}{3} \pi$. Далее см. пример 5.
- 7. Записав неравенство в виде $\cos{(2x-2)} > \frac{1}{2}$ и введя подстановку t = 2x-2, получите простейшее тригонометрическое неравенство $\cos{t} > \frac{1}{2}$. Решив это неравенство (см. пример 4), найдете $-\frac{\pi}{3} + 2\pi k < t < \frac{\pi}{3} + 2\pi k$, откуда получите: $-\frac{\pi}{3} + 2\pi k < 2x-2 < \frac{\pi}{3} + 2\pi k$. Далее решите полученное двойное неравенство относительно x.
- 8. Уравнение $|\cos x| = \frac{\sqrt{2}}{2}$ имеет решение $x = \pm \frac{\pi}{4} + \pi k$. При k = 0 получаете $x_0 = -\frac{\pi}{4}$, $x_1 = \frac{\pi}{4}$. Далее учтите, что на ин-

тервале $x_0 < x < x_1$ кривая $y = |\cos x|$ проходит выше прямой $y = \frac{\sqrt{2}}{2}$, и воспользуйтесь периодичностью функции $y = |\cos x|$.

- 9. Уравнение $|\lg x| = 2$ имеет решение $x = \pm \arctan 2 + \pi k$, откуда при k = 0 получите: $x_0 = -\arctan 2$, $x_1 = \arctan 2$. Далее учтите, что на промежутках $-\frac{\pi}{2} < x < x_0$ и $x_1 < x < \frac{\pi}{2}$ кривая $y = |\lg x|$ проходит выше прямой y = 2, и воспользуйтесь периодичностью функции $y = |\lg x|$.
- 10. Решив неравенство относительно $\sin x$, найдите: $\sin x > -\frac{1}{3}$. Далее см. пример 2.

11. Решив неравенство относительно tg x, найдите: tg x > -1. Далее постройте тангенсоиду y = tg x и прямую y = -1.

- 12. Записав исходное неравенство в виде $2t^2+3t-2>0$, где $t=\cos x$, найдите его решение: $-2< t<\frac{1}{2}$. Отсюда $\cos x<$ $<\frac{1}{2}$. Далее постройте косинусоиду $y=\cos x$ и прямую y=0.5.
- 13. Записав неравенство в виде $\sin x > 1 \sin^2 x$, примените подстановку $t = \sin x$. Получив квадратное неравенство $t^2 + t 1 > 0$ и решив его, сделайте заключение, что исходное неравенство равносильно совокупности неравенств $\sin x < -\frac{1+\sqrt{5}}{2}$ и $\sin x > \frac{\sqrt{5}-1}{2}$, из которых решение имеет только второе неравенство. Далее см. пример 2.

14. Применив формулу (11.9), перепишите неравенство в виде: $\sqrt{2}\sin\left(x+\frac{\pi}{4}\right) < \sqrt{2}$ или $\sin\left(x+\frac{\pi}{4}\right) < 1$, что равносильно $\sin\left(x+\frac{\pi}{4}\right) \neq 1$ или $x+\frac{\pi}{4} \neq \frac{\pi}{2} + 2\pi k$.

- 15. Записав неравенство в виде $\sin x \cos x > 0$ и применив формулу (11.9), получите: $\sqrt{2} \sin \left(x \frac{\pi}{4}\right) > 0$. Отсюда: $\sin \left(x \frac{\pi}{4}\right) > 0$, $2\pi k < x \frac{\pi}{4} < \pi + 2\pi k$. Далее полученное неравенство решите относительно x.
- 16. Значения $x = \frac{\pi}{2} + \pi k$, при которых $\cos^2 x = 0$, исходному неравенству удовлетворяют. На множестве остальных значений x исходное неравенство равносильно неравенству $tg^2 x 3 tg x + 2 \geqslant 0$, имеющему решения $tg x \leqslant 1$ и $tg x \geqslant 2$. Далее объедините множества, удовлетворяющие совокупности последних двух неравенств, с множеством $x = \frac{\pi}{2} + \pi k$.

17. Неравенство можно записать в виде $\frac{1}{2} \sin 2x > 0$ или $\sin 2x > 0$.

Далее введите подстановку t=2x.

18. Преобразуйте данное неравенство: $\sin x + 1 - 2 \sin^2 x > 1$, $2 \sin^2 x - \sin x < 0$. Введя подстановку $t = \sin x$, придете к неравенству $2t^2 - t < 0$, откуда: $0 < t < \frac{1}{2}$. Далее см. пример 5.

19. Принимать x может только те значения, при которых $\cos x \neq 0$, $\cos 2x \neq 0$. Произведите следующие упрощения:

$$tg x \cdot 2 \cos^2 x < \sin 2x$$
; $\sin 2x < \sin 2x$.

20. Преобразовав произведения $\sin x \cdot \cos 3x$ и $\sin x \cdot \sin 3x$ в суммы, будете иметь

$$\cos^2 x \cdot \frac{\cos 2x + \cos 4x}{2} - \sin^2 x \cdot \frac{\cos 2x - \cos 4x}{2} > \frac{5}{8}$$

или

$$\cos 2x (\cos^2 x - \sin^2 x) + \cos 4x (\cos^2 x + \sin^2 x) > \frac{5}{4}$$

Произведите дальнейшие упрощения: $\cos^2 2x + \cos 4x > \frac{5}{4}$, $\frac{1+\cos 4x}{2} + \cos 4x > \frac{5}{4}$,

после чего получите простейшее тригонометрическое неравенство $\cos 4x > \frac{1}{2}$. Далее см. пример 7.

21. Преобразовав неравенство к виду:

$$\frac{5}{4} \cdot \frac{1 - \cos 2x}{2} + \frac{1}{4} (1 - \cos^2 2x) > \cos 2x,$$

после ряда упрощений получите неравенство:

$$2\cos^2 2x + 13\cos 2x - 7 < 0,$$

равносильное неравенству $-7 < \cos 2x < \frac{1}{2}$ или $\cos 2x < \frac{1}{2}$.

КОНТРОЛЬНОЕ ЗАДАНИЕ

Решите неравенства:

1.
$$\cos x \geqslant -\cos 5x$$
.

2.
$$\sin x \cdot \sin 2x < \sin 3x \cdot \sin 4x$$
, если $0 < x < \frac{\pi}{2}$.

3.
$$tg x > (tg 2x - 2) : (tg 2x + 2)$$
.

4.
$$|\sin x| \cdot |\cos x| > \frac{1}{4}$$
.

5.
$$\sin x > \sqrt{1 - \sin 2x}$$
.

6.
$$4^{\sin^2 \pi x} + 3 \cdot 4^{\cos^2 \pi x} \le 8$$
.

7.
$$\log_{0.5}\left(4\cdot\cos\left(2x-\frac{\pi}{3}\right)\right)<-1$$
.

8.
$$4 \log_{16} \cos 2x + 2 \log_4 \sin x + \log_2 \cos x + 3 < 0$$
, если $0 < x < \frac{\pi}{4}$.

9.
$$\sin(\cos x) < 0$$
. 10. $\log(\log_{\frac{1}{2}} x) > 0$.

11.
$$\sin(\pi \lg x) + \cos(\pi \lg x) \geqslant \frac{\sqrt{2}}{2}$$
.

Ответы

1.
$$2 \pi k \leqslant x \leqslant \frac{\pi}{6} + 2 \pi k; \frac{\pi}{4} + 2 \pi k \leqslant x \leqslant \frac{\pi}{2} + 2 \pi k; k \in \mathbb{Z}.$$

$$\frac{3}{4} \pi + 2 \pi k \leqslant x \leqslant \frac{5}{6} \pi + 2 \pi k; \frac{7}{6} \pi + 2 \pi k \leqslant x \leqslant \frac{5}{4} \pi + 2 \pi k; k \in \mathbb{Z}.$$

$$\frac{3}{2} \pi + 2 \pi k \leqslant x \leqslant \frac{7}{4} \pi + 2 \pi k; \frac{11 \pi}{6} + 2 \pi k \leqslant x \leqslant 2 \pi + 2 \pi k, k \in \mathbb{Z}.$$

2.
$$0 < x < \frac{\pi}{5}$$
; $\frac{2}{5} \pi < x < \frac{\pi}{2}$.

3.
$$\pi k - \arctan \frac{\sqrt{5} - 1}{2} < x < \frac{\pi}{4} + \pi k$$
; $\pi k + \arctan \frac{\sqrt{5} + 1}{2} < x < \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$.

4.
$$\frac{\pi}{2} + 2\pi k < x < \frac{5\pi}{12} + 2\pi k$$
; $\frac{7}{12}\pi + 2\pi k < x < \frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$.

5.
$$\arctan \frac{1}{2} + 2\pi k < x < \frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}$$
.

6.
$$\frac{1}{4} + k \leq x \leq \frac{3}{4} + k$$
, $k \in \mathbb{Z}$. 7. $\pi k < x < \frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$.

8.
$$0 < x < \frac{\pi}{24}$$
; $\frac{5}{24} \pi < x < \frac{\pi}{4}$.

9.
$$\frac{\pi}{2} + 2\pi k < x < \frac{3}{2}\pi + 2\pi k, \ k \in \mathbb{Z}.$$

10.
$$2^{-\frac{\pi}{2} + \pi^{\frac{1}{2}}} < x < 2^{\pi k}$$
. 11. $10^{2k - \frac{1}{12}} \le x \le 10^{2k + \frac{7}{12}}$.

ЗАДАНИЕ 12

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

§ 1. РЕШЕНИЕ НЕКОТОРЫХ УРАВНЕНИЙ, СОДЕРЖАЩИХ ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ (АРКФУНКЦИИ)

Для решения предлагаемых задач, содержащих обратные тригонометрические функции, достаточно хорошо знать их определения.

Сведем эти определения в таблицу:

$y = \arcsin x$	$y = \arccos x$	$y = \operatorname{arctg} x$	$y = \operatorname{arcctg} x$
если 1) $\sin y = x$ $x \in [-1; 1]$ 2) $y \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$	если 1) $\cos y = x$ $x \in [-1; 1]$ 2) $y \in [0; \pi]$	если 1) $\operatorname{tg} y = x$ 2) $y \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$	если 1) ctg y = x 2) y ∈]0; π[

а) Простейшие уравнения:

arcsin
$$x = a$$
,
arctg $x = a$,
arccos $x = a$,
arcctg $x = a$.
(12.1)
(12.2)
(12.3)
(12.4)

Эти уравнения решаются непосредственно на основании определений обратных тригонометрических функций (см. таблицу).

б) Тождества:

$$\arcsin x + \arccos x = \frac{\pi}{2},\tag{12.5}$$

$$\operatorname{arcctg} x + \operatorname{arctg} x = \frac{\pi}{2}. \tag{12.6}$$

УПРАЖНЕНИЯ

Решите уравнения:

1. $3 \arcsin^2 x - 10 \arcsin x + 3 = 0$.

2.
$$\arcsin\left(x^2 + x + \frac{1}{\sqrt{2}}\right) = \arccos\left(x^2 + x + \frac{1}{\sqrt{2}}\right)$$
.

3.
$$\arcsin \frac{5x-1}{3} + 2\arccos \frac{5x-1}{3} = \frac{5\pi}{6}$$
.

4.
$$\arcsin x - \arcsin \frac{x}{2} = \frac{\pi}{3}$$
.

5.
$$\arctan(2 + \cos x) - \arctan(2 \cos^2 \frac{x}{2}) = \frac{\pi}{4}$$
.

6. $\arcsin x = \arctan x$.

7. $\lg(\operatorname{arctg} x) + \lg(\operatorname{arcctg} x) = 1$.

8. $\sin (\pi \cdot \operatorname{arctg} x) = \cos (\pi \cdot \operatorname{arctg} x)$.

9. $tg(3 \operatorname{arctg} x) = \operatorname{ctg}(3 \operatorname{arcctg} x)$.

10. Решите систему уравнений:

$$\begin{cases} \arcsin x \cdot \arcsin y = \frac{\pi^2}{12}, \\ \arccos x \cdot \arccos y = \frac{\pi^3}{24}. \end{cases}$$

Ответы

1.
$$\left\{\sin\frac{1}{3}\right\}$$
. 2. $\{-1; 0\}$. 3. $\{0,5\}$. 4. $\{1\}$. 5. $\{\pi(2k+1) k \in \mathbb{Z}\}$.

6.
$$\left\{\sqrt{\frac{\sqrt{5}-1}{2}}\right\}$$
. 7. \varnothing . 8. $\left\{tg\frac{1}{4}; tg\frac{5}{4}; -tg\frac{3}{4}\right\}$. 9. $\left\{-\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}\right\}$.

10.
$$\left\{\left(\frac{\sqrt{3}}{2}; \frac{\sqrt{2}}{2}\right); \left(\frac{\sqrt{2}}{2}; \frac{\sqrt{3}}{2}\right)\right\}$$
.

КОНСУЛЬТАЦИИ ПЕРВОГО УРОВНЯ

- 1. Решите уравнение как квадратное относительно arcsin x.
- 2. Арккосинус выразите через арксинус.
- 3. См. пример 2.
- 4. Перенесите $\arcsin\frac{x}{2}$ в правую часть уравнения и возьмите синусы от обеих частей уравнения, применив формулу для синуса суммы.
- 5. Взяв тангенсы от обеих частей уравнения, примените формулу для тангенса разности.
- 6. Возьмите синусы от обеих частей уравнения и выразите $\sin(\operatorname{arcctg} x)$ через $\operatorname{ctg}(\operatorname{arcctg} x)$.
- 7. В левой части уравнения выполните потенцирование. Арккотангенсы выразите через арктангенсы.
- 8. Учтите, что уравнение является однородным относительно синуса и косинуса.
- 9. Выразив arcctg x через arctg x, примените формулу приведения, после чего установите область определения уравнения.
- 10. Выразив арккосинусы через арксинусы, введите вспомогательные неизвестные: arcsin x = u, arcsin y = v.

КОНСУЛЬТАЦИИ ВТОРОГО УРОВНЯ

- 1. Решив уравнение относительно арксинуса, получите совокупность уравнений $\arcsin x = 3$ и $\arcsin x = \frac{1}{3}$, из которых решение имеет только второе уравнение. Оно решается по определению арксинуса.
- 2. Так как для любого $|m| \leqslant 1 \arcsin m + \arccos m = \frac{\pi}{2}$, то дан-

ное уравнение равносильно уравнению $\arcsin\left(x^2+x+\frac{1}{\sqrt{2}}\right)=\frac{\pi}{2}-\arcsin\left(x^2+x+\frac{1}{\sqrt{2}}\right)$ или $\arcsin\left(x^2+x+\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$. Далее примените определение арксинуса и решите квадратное уравнение относительно x.

3. Выразив арккосинус через арксинус, придете к уравнению

$$\arcsin\frac{5x-1}{3}+2\left(\frac{\pi}{2}-\arcsin\frac{5x-1}{3}\right)=\frac{5\pi}{6},$$

откуда $\arcsin \frac{5x-1}{3} = \frac{\pi}{6}$. Далее см. пример 2.

4. Запишите уравнение в виде arcsin $x = \frac{\pi}{3} + \arcsin \frac{x}{2}$ и возьмите синусы от обеих частей уравнения:

$$\sin(\arcsin x) = \sin\frac{\pi}{3} \cdot \cos\left(\arcsin\frac{x}{2}\right) + \cos\frac{\pi}{3} \cdot \sin\left(\arcsin\frac{x}{2}\right),$$
откуда $x = \frac{\sqrt{3}}{2} \sqrt{1 - \frac{x^2}{4}} + \frac{1}{2} \cdot \frac{x}{2}, x\sqrt{3} = \sqrt{4 - x^2}.$

Решив это иррациональное уравнение, следует проверить найденные корни подстановкой их в исходное уравнение.

5. Возьмите тангенсы от обеих частей уравнения:

$$\frac{\operatorname{tg}(\operatorname{arctg}(2+\cos x))-\operatorname{tg}(\operatorname{arctg}(1+\cos x))}{1+\operatorname{tg}(\operatorname{arctg}(2+\cos x))\cdot\operatorname{tg}(\operatorname{arctg}(1+\cos x))}=\operatorname{tg}\frac{\pi}{4},$$

откуда уравнение примет вид:

$$\frac{1}{1-(2+\cos x)(1+\cos x)}=1$$
 или $(2+\cos x)(1+\cos x)=0$.

6. Область определения данного уравнения состоит из значений x, для которых $x \le 1$. Взяв синусы от обеих частей уравнения, получите: $\sin(\arcsin x) = \sin(\arccos x)$. Далее используйте тождественные преобразования:

$$\sin(\operatorname{arcctg} x) = \frac{1}{\operatorname{cosec}(\operatorname{arcctg} x)} = \frac{1}{\sqrt{1 + \operatorname{ctg}^2(\operatorname{arcctg} x)}}$$

< п). После этого придете к уравнению $x = \frac{1}{\sqrt{1+x^2}}$, которое, в свою очередь, сведется к биквадратному уравнению $x^4 + x^2 - 1 = 0$. При проверке корней учтите, что, поскольку правая часть уравнения $\operatorname{arcctg} x > 0$, то и левая часть его должна быть больше нуля, т. е. $\operatorname{arcsin} x \geqslant 0$. Отсюда x > 0. Кроме того, $\operatorname{arcctg} x = \operatorname{arcsin} \frac{1}{\sqrt{1+x^2}}$.

(перед квадратным корнем взят знак плюс, так как $0 < \operatorname{arcctg} x < 0$

7. Так как при любом m, arctg $m + \operatorname{arcctg} m = \frac{\pi}{2}$, то после потенцирования уравнение можно записать в виде:

$$\lg\left(\arctan\left(\frac{\pi}{2}-\arctan\left(x\right)\right)=1,$$

откуда $\frac{\pi}{2}$ arctg x — arctg² x = 10.

Далее убедитесь, что полученное квадратное уравнение относительно $\operatorname{arctg} x$ имеет отрицательный дискриминант.

8. Разделив уравнение почленно на $\cos (\pi \cdot \arctan x) \neq 0$, получим равносильное уравнение $tg(\pi \cdot \arctan x) = 1$, откуда $\arctan x = \frac{1}{4} + k$. Так как $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$, то k = 0; —1; 1.

Далее примените определение арктангенса.

9. Запишите уравнение в виде: $tg(3 \arctan x) = ctg(3 \cdot (\frac{\pi}{2} - \arctan x))$ или $tg(3 \arctan x) = tg(3 \arctan x)$.

Так как — $\frac{\pi}{2}$ < arctg $x < \frac{\pi}{2}$, то — $\frac{3}{2}\pi < 3 \arctan x < \frac{3\pi}{2}$.

На интервале $\left(-\frac{3}{2}\pi; \frac{3}{2}\pi\right)$ tg 3 arctg x существует, если 3 arctg $x \neq \pm \frac{\pi}{2}$ или arctg $x \neq \pm \frac{\pi}{6}$; т. е. должно быть $x \neq \pm \frac{1}{\sqrt{3}}$.

При таких значениях x уравнение обращается в тождество.

10. Запишите систему в виде:

$$\begin{cases} \arcsin x \cdot \arcsin y = \frac{\pi^2}{12}, \\ \left(\frac{\pi}{2} - \arcsin x\right) \left(\frac{\pi}{2} \cdot \arcsin y\right) = \frac{\pi^2}{4}. \end{cases}$$

или
$$\begin{cases} uv = \frac{\pi^2}{12}, \\ \left(\frac{\pi}{2} - u\right)\left(\frac{\pi}{2} - v\right) = \frac{\pi^2}{24}, \text{ где } u = \arcsin x, v = \arcsin y. \end{cases}$$

Выполнив во втором уравнении умножение и подставив в него значение произведения uv из первого уравнения, найдите, что $u + v = \frac{7\pi}{2!}$. Таким образом, исходная система равносильна системе уравнений:

$$\begin{cases} u+v=\frac{7\pi}{12},\\ u\cdot v=\frac{\pi^2}{12}. \end{cases}$$

Эта последняя система решается с помощью теоремы Виета путем составления вспомогательного квадратного уравнения:

 $a^2 - \frac{7}{21} \pi a + \frac{\pi^2}{12} = 0$. Отсюда найдите следующие значения arcsin x и arcsin y:

arcsin x	$\frac{\pi}{3}$	$\frac{\pi}{4}$
arcsin y	## 1 m	$\frac{\pi}{3}$

КОНТРОЛЬНОЕ ЗАДАНИЕ

Решите уравнения:

1.
$$3 \arcsin \sqrt{3} - \pi = 0$$
. 2. $\arccos (\sqrt{3}x) + \arccos x = \frac{\pi}{2}$.

3.
$$\arcsin \frac{3}{5}x + \arcsin \frac{4}{5}x = \arcsin x$$
.

4. 2
$$\arcsin x + \arccos (1 - x) = 0$$
. 5. $\arcsin x + \arccig x = 0$.

Ответы

1.
$$\left\{\frac{3}{4}\right\}$$
. 2. $\left\{\frac{1}{2}\right\}$. 3. $\{-1; 0; 1\}$. 4. $\{0\}$. 5. $\left\{\sqrt{\frac{\sqrt{5}-1}{2}}\right\}$.

ОГЛАВЛЕНИЕ

Задание 5.

Теоретический материал					£ \$	
§ 1. Преобразование	произведени	ия триг	гономет	грических	функции	53
в сумму Упражнения	• • • • •	• • •	• • • •		• • • •	- Ju
Упражнения	VDOBUG		• • • •		• • • • •	54
Консультации второго	Abonia .	• • •	• • •	• • • •		56
Консультации второго Контрольное задание	уровия	• • • •				59
Montposition Sugarine						
	Зада	ние 6				
Теоретический материал						
§ 1. Формулы суммы	и разности о	одноиме	нных	тригономе	грических	-
функций Упражнения		• • • •		• • • •	• • • •	60
Упражнения		• • •	• • •		• • • •	61
Консультации первого	уровня .	• • •	o, a 4 (• • • •	• • • •	62
Консультации второго Контрольное задание	уровня .		1991	• • • •	• • • •	63 66
Контрольное задание .	• • • • •	• • • •			• • • •	OC
	Зада	ние 7	7			
Теоретический материал						
§ 1. Производные триг	гон <mark>ометр</mark> ичес	ких фу	ункций			68
§ 2. Обратные тригоног	метрические	функци	й			_
Упражнения Консультации первого		• • •				69
Консультации первого	уровня .					72
Консультации второго				• • •		76
Контрольное задание .	• • • • • •	• • •		• • • •	• • • •	87
	Зада	ние 8	3			
Теоретический материал						
8 1 Тригонометрически	ie vna r uenus	r .				88
§ 1. Тригонометрически Упражнения Консультации первого	· · · · · · ·					91
Консультации первого	уровня .					94
Консультации второго	уровня .					97
Контрольное задание .						
	Зада	ние 9)			
Теоретический материал						100
§ 1. Первообразная § 2. Интеграл Упражнения Консультации первого	• • • • •	• • • •			• • • •	109
Yanayuaya	• • • • •	• • •	• • •	• • • •	• • • • •	110
VOUCURETORUS HODDORO	VACABLE	• • •	• • •	• • • •	• • • •	112
Консультации второго	Aborus .	• • • •		• • •	• • • • •	113
Контрольное задание .	уровии .	• • •				116
2 consportance ouganine				• • • •		
	Задан	ние 1	0			
Теоретический материал						
§ 1. Тригонометрически	ие функции	и их о	бласти	определен	ния	118
§ 1. Тригонометрически тр	игонометрич	еские ф	р <mark>ункци</mark>	и и неко	торые их	
свойства						
§ 3. Возрастание и уб						119
§ 4. Приемы построени					кций	
Упражнения						120
Консультации первого	уровня .					123
450						

Контрольное задан	второго уровня . ие		• • •	• •	• •	•	• •	•	129 141
	Зада	ние 11							
Теоретический матер	риал								
	тригонометрических	неравенст	В			•			143
Упражнения						•			144
Упражнения Консультации г	первого уровня .					•		•	146
Консультации г	второго уровня .					•		•	147
Контрольное задани	не					•		•	150
		ние 12							
Теоретический мате									
§ 1. Решение н	екоторых уравнени	ій, содержац	цих об	ратн	ые '	гри	гон	0•	150
§ 1. Решение н метрически	екоторых уравнени че функции (аркфу	ункции) .	• • •			•		•	152
§ 1. Решение н метрически	екоторых уравнени че функции (аркфу	ункции) .	• • •			•		•	_
§ 1. Решение н метрически Упражнения . Консультации г	екоторых уравнени че функции (аркфу первого уровня	ункции) . 	• • • • • • • • • • • • • • • • • • •	• •	• •	•		•	153
§ 1. Решение н метрически Упражнения . Консультации г	екоторых уравнени че функции (аркфу первого уровня второго уровня	ункции) . • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• •	•		•	_

Виталий Семенович Крамор Петр Алексеевич Михайлов

тригонометрические функции

Редакторы Ж. П. Данилова, Л. В. Антонова Художник Б. Л. Николаев Художественный редактор Е. Н. Карасию Технический редактор Г. В. Субочева Корректор А. А. Гусельникова

ИБ № 7329

Сдано в набор 10.01.83. Подписано к печати 10.08.83. Формат 60×90¹/16. Бум. типограф. № 1. Гарнит. литер. Печать высокая. Усл. печ. л. 10,0. Усл. кр. отт. 10,25. Уч.-изд. л. 8,79. Тираж 200000 экз. Заказ № 546. Цена 20 коп.

Ордена Трудового Красного Знамени издательство «Просвещение» Государственного комитета РСФСР по делам издательств, полиграфии и книжной торговли. Москва, 3-й проезд Марьиной рощи, 41.

Саратовский ордена Трудового Красного Знамени полиграфический комбинат Росглавнолиграфирома Государственного комитета РСФСР по делам издательств, полиграфии и книжной торговли. Саратов, ул. Чернышевского, 59.